APP_Framework/:fix some Kconfig file in Applications and Framework. and change know to knowing ,remove uncomfortable file(their location is wrong)

This commit is contained in:
chunyexixiaoyu 2021-07-14 15:11:42 +08:00
parent 81323fa992
commit fcd14e038e
34 changed files with 186 additions and 32732 deletions

View File

@ -1,14 +1,3 @@
menu "connection app" menu "connection app"
menuconfig APPLICATION_CONNECTION
bool "Using connection apps"
default n
menuconfig CONNECTION_COMMUNICATION_ZIGBEE
bool "enable zigbee demo"
default n
select CONFIG_CONNECTION_COMMUNICATION_ZIGBEE
if CONNECTION_COMMUNICATION_ZIGBEE
source "$KERNEL_DIR/framework/connection/Adapter/zigbee/Kconfig"
endif
endmenu endmenu

View File

@ -20,7 +20,7 @@ menu "Framework"
source "$APP_DIR/Framework/sensor/Kconfig" source "$APP_DIR/Framework/sensor/Kconfig"
source "$APP_DIR/Framework/connection/Kconfig" source "$APP_DIR/Framework/connection/Kconfig"
source "$APP_DIR/Framework/know/Kconfig" source "$APP_DIR/Framework/knowing/Kconfig"
source "$APP_DIR/Framework/control/Kconfig" source "$APP_DIR/Framework/control/Kconfig"

View File

@ -1,2 +0,0 @@
*.h5
*.tflite

View File

@ -1,4 +0,0 @@
menuconfig USING_TFLITE_MNIST
bool "mnist demo app for tflite micro"
depends on INTELLIGENT_TFLITE
default n

View File

@ -1,8 +0,0 @@
ifeq ($(CONFIG_USING_TFLITE_MNIST),y)
SRC_FILES := \
mnistapp.cpp \
mnistmain.c
CPPPATHS += -I.
endif
include $(KERNEL_ROOT)/compiler.mk

View File

@ -1,19 +0,0 @@
# MNIST 说明
## 使用
tools/mnist-train.py 训练生成 mnist 模型。
tools/mnist-inference.py 使用 mnist 模型进行推理。
tools/mnist-c-model.py 将 mnist 模型转换成 C 的数组保存在 model.h 中。
tools/mnist-c-digit.py 将 mnist 数据集中的某个数字转成数组保存在 digit.h 中。
## 参考资料
https://tensorflow.google.cn/lite/performance/post_training_quantization
https://tensorflow.google.cn/lite/performance/post_training_integer_quant
https://colab.research.google.com/github/tensorflow/tensorflow/blob/master/tensorflow/lite/micro/examples/hello_world/train/train_hello_world_model.ipynb

View File

@ -1,51 +0,0 @@
/*
* Copyright (c) 2020 AIIT XUOS Lab
* XiOS is licensed under Mulan PSL v2.
* You can use this software according to the terms and conditions of the Mulan PSL v2.
* You may obtain a copy of Mulan PSL v2 at:
* http://license.coscl.org.cn/MulanPSL2
* THIS SOFTWARE IS PROVIDED ON AN "AS IS" BASIS, WITHOUT WARRANTIES OF ANY KIND,
* EITHER EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO NON-INFRINGEMENT,
* MERCHANTABILITY OR FIT FOR A PARTICULAR PURPOSE.
* See the Mulan PSL v2 for more details.
*/
/**
* @file: digit.h
* @brief: store digits in this file
* @version: 1.0
* @author: AIIT XUOS Lab
* @date: 2021/4/30
*
*/
const float mnist_digit[] = {
0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00,
0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00,
0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00,
0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00,
0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00,
0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00,
0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00,
0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.33, 0.73, 0.62, 0.59, 0.24, 0.14, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00,
0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.87, 1.00, 1.00, 1.00, 1.00, 0.95, 0.78, 0.78, 0.78, 0.78, 0.78, 0.78, 0.78, 0.78, 0.67, 0.20, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00,
0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.26, 0.45, 0.28, 0.45, 0.64, 0.89, 1.00, 0.88, 1.00, 1.00, 1.00, 0.98, 0.90, 1.00, 1.00, 0.55, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00,
0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.07, 0.26, 0.05, 0.26, 0.26, 0.26, 0.23, 0.08, 0.93, 1.00, 0.42, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00,
0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.33, 0.99, 0.82, 0.07, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00,
0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.09, 0.91, 1.00, 0.33, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00,
0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.51, 1.00, 0.93, 0.17, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00,
0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.23, 0.98, 1.00, 0.24, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00,
0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.52, 1.00, 0.73, 0.02, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00,
0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.04, 0.80, 0.97, 0.23, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00,
0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.49, 1.00, 0.71, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00,
0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.29, 0.98, 0.94, 0.22, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00,
0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.07, 0.87, 1.00, 0.65, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00,
0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.01, 0.80, 1.00, 0.86, 0.14, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00,
0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.15, 1.00, 1.00, 0.30, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00,
0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.12, 0.88, 1.00, 0.45, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00,
0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.52, 1.00, 1.00, 0.20, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00,
0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.24, 0.95, 1.00, 1.00, 0.20, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00,
0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.47, 1.00, 1.00, 0.86, 0.16, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00,
0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.47, 1.00, 0.81, 0.07, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00,
0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00
};
const int mnist_label = 7;

View File

@ -1,112 +0,0 @@
/*
* Copyright (c) 2020 AIIT XUOS Lab
* XiOS is licensed under Mulan PSL v2.
* You can use this software according to the terms and conditions of the Mulan PSL v2.
* You may obtain a copy of Mulan PSL v2 at:
* http://license.coscl.org.cn/MulanPSL2
* THIS SOFTWARE IS PROVIDED ON AN "AS IS" BASIS, WITHOUT WARRANTIES OF ANY KIND,
* EITHER EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO NON-INFRINGEMENT,
* MERCHANTABILITY OR FIT FOR A PARTICULAR PURPOSE.
* See the Mulan PSL v2 for more details.
*/
/**
* @file: mnistapp.cpp
* @brief: mnist function
* @version: 1.0
* @author: AIIT XUOS Lab
* @date: 2021/4/30
*
*/
#include <xiuos.h>
#include "tensorflow/lite/micro/all_ops_resolver.h"
#include "tensorflow/lite/micro/micro_error_reporter.h"
#include "tensorflow/lite/micro/micro_interpreter.h"
#include "tensorflow/lite/schema/schema_generated.h"
#include "tensorflow/lite/version.h"
#include "digit.h"
#include "model.h"
namespace {
tflite::ErrorReporter* error_reporter = nullptr;
const tflite::Model* model = nullptr;
tflite::MicroInterpreter* interpreter = nullptr;
TfLiteTensor* input = nullptr;
TfLiteTensor* output = nullptr;
constexpr int kTensorArenaSize = 110 * 1024;
//uint8_t *tensor_arena = nullptr;
uint8_t tensor_arena[kTensorArenaSize];
}
extern "C" void mnist_app() {
tflite::MicroErrorReporter micro_error_reporter;
error_reporter = &micro_error_reporter;
model = tflite::GetModel(mnist_model);
if (model->version() != TFLITE_SCHEMA_VERSION) {
TF_LITE_REPORT_ERROR(error_reporter,
"Model provided is schema version %d not equal "
"to supported version %d.",
model->version(), TFLITE_SCHEMA_VERSION);
return;
}
/*
tensor_arena = (uint8_t *)rt_malloc(kTensorArenaSize);
if (tensor_arena == nullptr) {
TF_LITE_REPORT_ERROR(error_reporter, "malloc for tensor_arena failed");
return;
}
*/
tflite::AllOpsResolver resolver;
tflite::MicroInterpreter static_interpreter(
model, resolver, tensor_arena, kTensorArenaSize, error_reporter);
interpreter = &static_interpreter;
// Allocate memory from the tensor_arena for the model's tensors.
TfLiteStatus allocate_status = interpreter->AllocateTensors();
if (allocate_status != kTfLiteOk) {
TF_LITE_REPORT_ERROR(error_reporter, "AllocateTensors() failed");
return;
}
input = interpreter->input(0);
output = interpreter->output(0);
KPrintf("\n------- Input Digit -------\n");
for (int i = 0; i < 28; i++) {
for (int j = 0; j < 28; j++) {
if (mnist_digit[i*28+j] > 0.3)
KPrintf("#");
else
KPrintf(".");
}
KPrintf("\n");
}
for (int i = 0; i < 28*28; i++) {
input->data.f[i] = mnist_digit[i];
}
TfLiteStatus invoke_status = interpreter->Invoke();
if (invoke_status != kTfLiteOk) {
TF_LITE_REPORT_ERROR(error_reporter, "Invoke failed on x_val\n");
return;
}
// Read the predicted y value from the model's output tensor
float max = 0.0;
int index;
for (int i = 0; i < 10; i++) {
if(output->data.f[i]>max){
max = output->data.f[i];
index = i;
}
}
KPrintf("\n------- Output Result -------\n");
KPrintf("result is %d\n\n", index);
}

View File

@ -1,30 +0,0 @@
/*
* Copyright (c) 2020 AIIT XUOS Lab
* XiOS is licensed under Mulan PSL v2.
* You can use this software according to the terms and conditions of the Mulan PSL v2.
* You may obtain a copy of Mulan PSL v2 at:
* http://license.coscl.org.cn/MulanPSL2
* THIS SOFTWARE IS PROVIDED ON AN "AS IS" BASIS, WITHOUT WARRANTIES OF ANY KIND,
* EITHER EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO NON-INFRINGEMENT,
* MERCHANTABILITY OR FIT FOR A PARTICULAR PURPOSE.
* See the Mulan PSL v2 for more details.
*/
/**
* @file: mnistmain.c
* @brief: start mnist function
* @version: 1.0
* @author: AIIT XUOS Lab
* @date: 2021/4/30
*
*/
#include <xiuos.h>
void mnist_app(void);
int tfmnist(void) {
mnist_app();
}
SHELL_EXPORT_CMD(SHELL_CMD_PERMISSION(0)|SHELL_CMD_TYPE(SHELL_TYPE_CMD_FUNC)|SHELL_CMD_PARAM_NUM(0), tfmnist, tfmnist, run mnist demo of tflite);

File diff suppressed because it is too large Load Diff

View File

@ -1,54 +0,0 @@
#!/usr/bin/env python3
# ==========================================================================================
# Copyright (c) 2020 AIIT XUOS Lab
# XiOS is licensed under Mulan PSL v2.
# You can use this software according to the terms and conditions of the Mulan PSL v2.
# You may obtain a copy of Mulan PSL v2 at:
# http://license.coscl.org.cn/MulanPSL2
# THIS SOFTWARE IS PROVIDED ON AN "AS IS" BASIS, WITHOUT WARRANTIES OF ANY KIND,
# EITHER EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO NON-INFRINGEMENT,
# MERCHANTABILITY OR FIT FOR A PARTICULAR PURPOSE.
# See the Mulan PSL v2 for more details.
# @file: mnist-c-digit.py
# @brief: print image digit at command line
# @version: 1.0
# @author: AIIT XUOS Lab
# @date: 2021/4/30
# ==========================================================================================
import tensorflow as tf
print("TensorFlow version %s" % (tf.__version__))
def show(image):
for i in range(28):
for j in range(28):
if image[i][j] > 0.3:
print('#', end = '')
else:
print('.', end = '')
print()
digit_file_path = 'digit.h'
digit_content = '''const float mnist_digit[] = {
%s
};
const int mnist_label = %d;
'''
if __name__ == '__main__':
mnist = tf.keras.datasets.mnist
(_, _), (test_images, test_labels) = mnist.load_data()
index = 0
shape = 28
image = test_images[index].astype('float32')/255
label = test_labels[index]
print('label: %d' % label)
#show(image)
digit_data = (',\n ').join([ (', ').join([ '%.2f' % image[row][col] for col in range(shape)]) for row in range(shape)])
digit_file = open(digit_file_path, 'w')
digit_file.write(digit_content % (digit_data, label))
digit_file.close()

View File

@ -1,41 +0,0 @@
#!/usr/bin/env python3
# ==========================================================================================
# Copyright (c) 2020 AIIT XUOS Lab
# XiOS is licensed under Mulan PSL v2.
# You can use this software according to the terms and conditions of the Mulan PSL v2.
# You may obtain a copy of Mulan PSL v2 at:
# http://license.coscl.org.cn/MulanPSL2
# THIS SOFTWARE IS PROVIDED ON AN "AS IS" BASIS, WITHOUT WARRANTIES OF ANY KIND,
# EITHER EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO NON-INFRINGEMENT,
# MERCHANTABILITY OR FIT FOR A PARTICULAR PURPOSE.
# See the Mulan PSL v2 for more details.
# @file: mnist-c-model.py
# @brief: open file path and load model
# @version: 1.0
# @author: AIIT XUOS Lab
# @date: 2021/4/30
# ==========================================================================================
#tflite_file_path = 'mnist-default-quan.tflite'
tflite_file_path = 'mnist.tflite'
model_file_path = 'model.h'
tflite_file = open(tflite_file_path, 'rb')
tflite_data = tflite_file.read()
tflite_file.close()
tflite_array = [ '0x%02x' % byte for byte in tflite_data ]
model_content = '''unsigned char mnist_model[] = {
%s
};
unsigned int mnist_model_len = %d;
'''
# 12 bytes in a line, the same with xxd
bytes_of_line = 12
model_data = (',\n ').join([ (', ').join(tflite_array[i:i+bytes_of_line]) for i in range(0, len(tflite_array), bytes_of_line) ])
model_file = open(model_file_path, 'w')
model_file.write(model_content % (model_data, len(tflite_array)))
model_file.close()

View File

@ -1,58 +0,0 @@
#!/usr/bin/env python3
# ==========================================================================================
# Copyright (c) 2020 AIIT XUOS Lab
# XiOS is licensed under Mulan PSL v2.
# You can use this software according to the terms and conditions of the Mulan PSL v2.
# You may obtain a copy of Mulan PSL v2 at:
# http://license.coscl.org.cn/MulanPSL2
# THIS SOFTWARE IS PROVIDED ON AN "AS IS" BASIS, WITHOUT WARRANTIES OF ANY KIND,
# EITHER EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO NON-INFRINGEMENT,
# MERCHANTABILITY OR FIT FOR A PARTICULAR PURPOSE.
# See the Mulan PSL v2 for more details.
# @file: mnist-inference.py
# @brief: load data amd start model omferemce
# @version: 1.0
# @author: AIIT XUOS Lab
# @date: 2021/4/30
# ==========================================================================================
import tensorflow as tf
print("TensorFlow version %s" % (tf.__version__))
MODEL_NAME_H5 = 'mnist.h5'
MODEL_NAME_TFLITE = 'mnist.tflite'
DEFAULT_QUAN_MODEL_NAME_TFLITE = 'mnist-default-quan.tflite'
FULL_QUAN_MODEL_NAME_TFLITE = 'mnist-full-quan.tflite'
def show(image):
for i in range(28):
for j in range(28):
if image[i][j][0] > 0.3:
print('#', end = '')
else:
print(' ', end = '')
print()
if __name__ == '__main__':
mnist = tf.keras.datasets.mnist
(_, _), (test_images, test_labels) = mnist.load_data()
test_images = test_images.reshape(10000, 28, 28, 1)
index = 0
input_image = test_images[index].astype('float32')/255
target_label = test_labels[index]
interpreter = tf.lite.Interpreter(model_path = DEFAULT_QUAN_MODEL_NAME_TFLITE)
interpreter.allocate_tensors()
input_details = interpreter.get_input_details()[0]
output_details = interpreter.get_output_details()[0]
interpreter.set_tensor(input_details['index'], [input_image])
interpreter.invoke()
output = interpreter.get_tensor(output_details['index'])[0]
show(input_image)
print('target label: %d, predict label: %d' % (target_label, output.argmax()))

View File

@ -1,127 +0,0 @@
#!/usr/bin/env python3
# ==========================================================================================
# Copyright (c) 2020 AIIT XUOS Lab
# XiOS is licensed under Mulan PSL v2.
# You can use this software according to the terms and conditions of the Mulan PSL v2.
# You may obtain a copy of Mulan PSL v2 at:
# http://license.coscl.org.cn/MulanPSL2
# THIS SOFTWARE IS PROVIDED ON AN "AS IS" BASIS, WITHOUT WARRANTIES OF ANY KIND,
# EITHER EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO NON-INFRINGEMENT,
# MERCHANTABILITY OR FIT FOR A PARTICULAR PURPOSE.
# See the Mulan PSL v2 for more details.
# @file: mnist-train.py
# @brief: model training
# @version: 1.0
# @author: AIIT XUOS Lab
# @date: 2021/4/30
# ==========================================================================================
import os
import tensorflow as tf
print("TensorFlow version %s" % (tf.__version__))
MODEL_NAME_H5 = 'mnist.h5'
MODEL_NAME_TFLITE = 'mnist.tflite'
DEFAULT_QUAN_MODEL_NAME_TFLITE = 'mnist-default-quan.tflite'
FULL_QUAN_MODEL_NAME_TFLITE = 'mnist-full-quan.tflite'
def build_model(model_name):
print('\n>>> load mnist dataset')
mnist = tf.keras.datasets.mnist
(train_images, train_labels),(test_images, test_labels) = mnist.load_data()
print("train images shape: ", train_images.shape)
print("train labels shape: ", train_labels.shape)
print("test images shape: ", test_images.shape)
print("test labels shape: ", test_labels.shape)
# transform label to categorical, like: 2 -> [0, 0, 1, 0, 0, 0, 0, 0, 0, 0]
print('\n>>> transform label to categorical')
train_labels = tf.keras.utils.to_categorical(train_labels)
test_labels = tf.keras.utils.to_categorical(test_labels)
print("train labels shape: ", train_labels.shape)
print("test labels shape: ", test_labels.shape)
# transform color like: [0, 255] -> 0.xxx
print('\n>>> transform image color into float32')
train_images = train_images.astype('float32') / 255
test_images = test_images.astype('float32') / 255
# reshape image like: (60000, 28, 28) -> (60000, 28, 28, 1)
print('\n>>> reshape image with color channel')
train_images = train_images.reshape((60000, 28, 28, 1))
test_images = test_images.reshape((10000, 28, 28, 1))
print("train images shape: ", train_images.shape)
print("test images shape: ", test_images.shape)
print('\n>>> build model')
model = tf.keras.models.Sequential([
tf.keras.layers.Conv2D(32, (3, 3), activation=tf.nn.relu, input_shape=(28, 28, 1)),
tf.keras.layers.MaxPooling2D((2, 2)),
tf.keras.layers.Conv2D(64, (3, 3), activation=tf.nn.relu),
tf.keras.layers.MaxPooling2D((2, 2)),
tf.keras.layers.Conv2D(64, (3, 3), activation=tf.nn.relu),
tf.keras.layers.Flatten(),
tf.keras.layers.Dense(64, activation=tf.nn.relu),
tf.keras.layers.Dense(10, activation=tf.nn.softmax)
])
model.compile(optimizer='rmsprop',
loss='categorical_crossentropy',
metrics=['accuracy'])
model.summary()
print('\n>>> train the model')
early_stopping = tf.keras.callbacks.EarlyStopping(
monitor='loss', min_delta=0.0005, patience=3, verbose=1, mode='auto',
baseline=None, restore_best_weights=True
)
model.fit(train_images, train_labels, epochs=100, batch_size=64, callbacks=[early_stopping])
print('\n>>> evaluate the model')
test_loss, test_acc = model.evaluate(test_images, test_labels)
print("lost: %f, accuracy: %f" % (test_loss, test_acc))
print('\n>>> save the keras model as %s' % model_name)
model.save(model_name)
if __name__ == '__main__':
if not os.path.exists(MODEL_NAME_H5):
build_model(MODEL_NAME_H5)
if not os.path.exists(MODEL_NAME_TFLITE):
print('\n>>> save the tflite model as %s' % MODEL_NAME_TFLITE)
converter = tf.lite.TFLiteConverter.from_keras_model(tf.keras.models.load_model(MODEL_NAME_H5))
tflite_model = converter.convert()
with open(MODEL_NAME_TFLITE, "wb") as f:
f.write(tflite_model)
if not os.path.exists(DEFAULT_QUAN_MODEL_NAME_TFLITE):
print('\n>>> save the default quantized model as %s' % DEFAULT_QUAN_MODEL_NAME_TFLITE)
converter = tf.lite.TFLiteConverter.from_keras_model(tf.keras.models.load_model(MODEL_NAME_H5))
converter.optimizations = [tf.lite.Optimize.DEFAULT]
tflite_model = converter.convert()
with open(DEFAULT_QUAN_MODEL_NAME_TFLITE, "wb") as f:
f.write(tflite_model)
if not os.path.exists(FULL_QUAN_MODEL_NAME_TFLITE):
mnist = tf.keras.datasets.mnist
(train_images, _), (_, _) = mnist.load_data()
train_images = train_images.astype('float32') / 255
train_images = train_images.reshape((60000, 28, 28, 1))
def representative_data_gen():
for input_value in tf.data.Dataset.from_tensor_slices(train_images).batch(1).take(100):
yield [input_value]
print('\n>>> save the full quantized model as %s' % DEFAULT_QUAN_MODEL_NAME_TFLITE)
converter = tf.lite.TFLiteConverter.from_keras_model(tf.keras.models.load_model(MODEL_NAME_H5))
converter.optimizations = [tf.lite.Optimize.DEFAULT]
converter.representative_dataset = representative_data_gen
converter.target_spec.supported_ops = [tf.lite.OpsSet.TFLITE_BUILTINS_INT8]
converter.inference_input_type = tf.uint8
converter.inference_output_type = tf.uint8
tflite_model = converter.convert()
with open(FULL_QUAN_MODEL_NAME_TFLITE, "wb") as f:
f.write(tflite_model)

View File

@ -1,4 +0,0 @@
menuconfig USING_TFLITE_SIN
bool "sin(x) demo app for tflite micro"
depends on INTELLIGENT_TFLITE
default n

View File

@ -1,11 +0,0 @@
ifeq ($(CONFIG_USING_TFLITE_SIN),y)
SRC_FILES := \
sinmain.c \
main_functions.cc \
model.cc \
output_handler.cc \
constants.cc
CPPPATHS += -I.
endif
include $(KERNEL_ROOT)/compiler.mk

View File

@ -1,19 +0,0 @@
/* Copyright 2019 The TensorFlow Authors. All Rights Reserved.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
==============================================================================*/
#include "constants.h"
// This is a small number so that it's easy to read the logs
const int kInferencesPerCycle = 20;

View File

@ -1,32 +0,0 @@
/* Copyright 2019 The TensorFlow Authors. All Rights Reserved.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
==============================================================================*/
#ifndef TENSORFLOW_LITE_MICRO_EXAMPLES_HELLO_WORLD_CONSTANTS_H_
#define TENSORFLOW_LITE_MICRO_EXAMPLES_HELLO_WORLD_CONSTANTS_H_
// This constant represents the range of x values our model was trained on,
// which is from 0 to (2 * Pi). We approximate Pi to avoid requiring additional
// libraries.
const float kXrange = 2.f * 3.14159265359f;
// This constant determines the number of inferences to perform across the range
// of x values defined above. Since each inference takes time, the higher this
// number, the more time it will take to run through the entire range. The value
// of this constant can be tuned so that one full cycle takes a desired amount
// of time. Since different devices take different amounts of time to perform
// inference, this value should be defined per-device.
extern const int kInferencesPerCycle;
#endif // TENSORFLOW_LITE_MICRO_EXAMPLES_HELLO_WORLD_CONSTANTS_H_

View File

@ -1,119 +0,0 @@
/* Copyright 2020 The TensorFlow Authors. All Rights Reserved.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
==============================================================================*/
#include "main_functions.h"
#include "tensorflow/lite/micro/all_ops_resolver.h"
#include "constants.h"
#include "model.h"
#include "output_handler.h"
#include "tensorflow/lite/micro/micro_error_reporter.h"
#include "tensorflow/lite/micro/micro_interpreter.h"
#include "tensorflow/lite/schema/schema_generated.h"
#include "tensorflow/lite/version.h"
// Globals, used for compatibility with Arduino-style sketches.
namespace {
tflite::ErrorReporter* error_reporter = nullptr;
const tflite::Model* model = nullptr;
tflite::MicroInterpreter* interpreter = nullptr;
TfLiteTensor* input = nullptr;
TfLiteTensor* output = nullptr;
int inference_count = 0;
constexpr int kTensorArenaSize = 10240;
uint8_t tensor_arena[kTensorArenaSize];
} // namespace
// The name of this function is important for Arduino compatibility.
void setup() {
// Set up logging. Google style is to avoid globals or statics because of
// lifetime uncertainty, but since this has a trivial destructor it's okay.
// NOLINTNEXTLINE(runtime-global-variables)
static tflite::MicroErrorReporter micro_error_reporter;
error_reporter = &micro_error_reporter;
// Map the model into a usable data structure. This doesn't involve any
// copying or parsing, it's a very lightweight operation.
model = tflite::GetModel(g_model);
if (model->version() != TFLITE_SCHEMA_VERSION) {
TF_LITE_REPORT_ERROR(error_reporter,
"Model provided is schema version %d not equal "
"to supported version %d.",
model->version(), TFLITE_SCHEMA_VERSION);
return;
}
// This pulls in all the operation implementations we need.
// NOLINTNEXTLINE(runtime-global-variables)
static tflite::AllOpsResolver resolver;
// Build an interpreter to run the model with.
static tflite::MicroInterpreter static_interpreter(
model, resolver, tensor_arena, kTensorArenaSize, error_reporter);
interpreter = &static_interpreter;
// Allocate memory from the tensor_arena for the model's tensors.
TfLiteStatus allocate_status = interpreter->AllocateTensors();
if (allocate_status != kTfLiteOk) {
TF_LITE_REPORT_ERROR(error_reporter, "AllocateTensors() failed");
return;
}
// Obtain pointers to the model's input and output tensors.
input = interpreter->input(0);
output = interpreter->output(0);
// Keep track of how many inferences we have performed.
inference_count = 0;
}
// The name of this function is important for Arduino compatibility.
void loop() {
// Calculate an x value to feed into the model. We compare the current
// inference_count to the number of inferences per cycle to determine
// our position within the range of possible x values the model was
// trained on, and use this to calculate a value.
float position = static_cast<float>(inference_count) /
static_cast<float>(kInferencesPerCycle);
float x = position * kXrange;
// Quantize the input from floating-point to integer
int8_t x_quantized = x / input->params.scale + input->params.zero_point;
// Place the quantized input in the model's input tensor
input->data.int8[0] = x_quantized;
// Run inference, and report any error
TfLiteStatus invoke_status = interpreter->Invoke();
if (invoke_status != kTfLiteOk) {
TF_LITE_REPORT_ERROR(error_reporter, "Invoke failed on x: %f\n",
static_cast<double>(x));
return;
}
// Obtain the quantized output from model's output tensor
int8_t y_quantized = output->data.int8[0];
// Dequantize the output from integer to floating-point
float y = (y_quantized - output->params.zero_point) * output->params.scale;
// Output the results. A custom HandleOutput function can be implemented
// for each supported hardware target.
HandleOutput(error_reporter, x, y);
// Increment the inference_counter, and reset it if we have reached
// the total number per cycle
inference_count += 1;
if (inference_count >= kInferencesPerCycle) inference_count = 0;
}

View File

@ -1,37 +0,0 @@
/* Copyright 2019 The TensorFlow Authors. All Rights Reserved.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
==============================================================================*/
#ifndef TENSORFLOW_LITE_MICRO_EXAMPLES_HELLO_WORLD_MAIN_FUNCTIONS_H_
#define TENSORFLOW_LITE_MICRO_EXAMPLES_HELLO_WORLD_MAIN_FUNCTIONS_H_
// Expose a C friendly interface for main functions.
#ifdef __cplusplus
extern "C" {
#endif
// Initializes all data needed for the example. The name is important, and needs
// to be setup() for Arduino compatibility.
void setup();
// Runs one iteration of data gathering and inference. This should be called
// repeatedly from the application code. The name needs to be loop() for Arduino
// compatibility.
void loop();
#ifdef __cplusplus
}
#endif
#endif // TENSORFLOW_LITE_MICRO_EXAMPLES_HELLO_WORLD_MAIN_FUNCTIONS_H_

View File

@ -1,237 +0,0 @@
/* Copyright 2020 The TensorFlow Authors. All Rights Reserved.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
==============================================================================*/
// Automatically created from a TensorFlow Lite flatbuffer using the command:
// xxd -i model.tflite > model.cc
// This is a standard TensorFlow Lite model file that has been converted into a
// C data array, so it can be easily compiled into a binary for devices that
// don't have a file system.
// See train/README.md for a full description of the creation process.
#include "model.h"
// Keep model aligned to 8 bytes to guarantee aligned 64-bit accesses.
alignas(8) const unsigned char g_model[] = {
0x1c, 0x00, 0x00, 0x00, 0x54, 0x46, 0x4c, 0x33, 0x14, 0x00, 0x20, 0x00,
0x1c, 0x00, 0x18, 0x00, 0x14, 0x00, 0x10, 0x00, 0x0c, 0x00, 0x00, 0x00,
0x08, 0x00, 0x04, 0x00, 0x14, 0x00, 0x00, 0x00, 0x1c, 0x00, 0x00, 0x00,
0x98, 0x00, 0x00, 0x00, 0xc8, 0x00, 0x00, 0x00, 0x1c, 0x03, 0x00, 0x00,
0x2c, 0x03, 0x00, 0x00, 0x30, 0x09, 0x00, 0x00, 0x03, 0x00, 0x00, 0x00,
0x01, 0x00, 0x00, 0x00, 0x04, 0x00, 0x00, 0x00, 0x60, 0xf7, 0xff, 0xff,
0x10, 0x00, 0x00, 0x00, 0x18, 0x00, 0x00, 0x00, 0x28, 0x00, 0x00, 0x00,
0x44, 0x00, 0x00, 0x00, 0x05, 0x00, 0x00, 0x00, 0x73, 0x65, 0x72, 0x76,
0x65, 0x00, 0x00, 0x00, 0x0f, 0x00, 0x00, 0x00, 0x73, 0x65, 0x72, 0x76,
0x69, 0x6e, 0x67, 0x5f, 0x64, 0x65, 0x66, 0x61, 0x75, 0x6c, 0x74, 0x00,
0x01, 0x00, 0x00, 0x00, 0x04, 0x00, 0x00, 0x00, 0xbc, 0xff, 0xff, 0xff,
0x09, 0x00, 0x00, 0x00, 0x04, 0x00, 0x00, 0x00, 0x07, 0x00, 0x00, 0x00,
0x64, 0x65, 0x6e, 0x73, 0x65, 0x5f, 0x34, 0x00, 0x01, 0x00, 0x00, 0x00,
0x04, 0x00, 0x00, 0x00, 0x76, 0xfd, 0xff, 0xff, 0x04, 0x00, 0x00, 0x00,
0x0d, 0x00, 0x00, 0x00, 0x64, 0x65, 0x6e, 0x73, 0x65, 0x5f, 0x32, 0x5f,
0x69, 0x6e, 0x70, 0x75, 0x74, 0x00, 0x00, 0x00, 0x01, 0x00, 0x00, 0x00,
0x0c, 0x00, 0x00, 0x00, 0x08, 0x00, 0x0c, 0x00, 0x08, 0x00, 0x04, 0x00,
0x08, 0x00, 0x00, 0x00, 0x0b, 0x00, 0x00, 0x00, 0x04, 0x00, 0x00, 0x00,
0x13, 0x00, 0x00, 0x00, 0x6d, 0x69, 0x6e, 0x5f, 0x72, 0x75, 0x6e, 0x74,
0x69, 0x6d, 0x65, 0x5f, 0x76, 0x65, 0x72, 0x73, 0x69, 0x6f, 0x6e, 0x00,
0x0c, 0x00, 0x00, 0x00, 0x50, 0x02, 0x00, 0x00, 0x48, 0x02, 0x00, 0x00,
0x34, 0x02, 0x00, 0x00, 0xdc, 0x01, 0x00, 0x00, 0x8c, 0x01, 0x00, 0x00,
0x6c, 0x01, 0x00, 0x00, 0x5c, 0x00, 0x00, 0x00, 0x3c, 0x00, 0x00, 0x00,
0x34, 0x00, 0x00, 0x00, 0x2c, 0x00, 0x00, 0x00, 0x24, 0x00, 0x00, 0x00,
0x04, 0x00, 0x00, 0x00, 0xfa, 0xfd, 0xff, 0xff, 0x04, 0x00, 0x00, 0x00,
0x10, 0x00, 0x00, 0x00, 0x31, 0x2e, 0x35, 0x2e, 0x30, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x84, 0xfd, 0xff, 0xff,
0x88, 0xfd, 0xff, 0xff, 0x8c, 0xfd, 0xff, 0xff, 0x22, 0xfe, 0xff, 0xff,
0x04, 0x00, 0x00, 0x00, 0x10, 0x00, 0x00, 0x00, 0x21, 0xa5, 0x8b, 0xca,
0x5e, 0x1d, 0xce, 0x42, 0x9d, 0xce, 0x1f, 0xb0, 0xdf, 0x54, 0x2f, 0x81,
0x3e, 0xfe, 0xff, 0xff, 0x04, 0x00, 0x00, 0x00, 0x00, 0x01, 0x00, 0x00,
0xee, 0xfc, 0x00, 0xec, 0x05, 0x17, 0xef, 0xec, 0xe6, 0xf8, 0x03, 0x01,
0x00, 0xfa, 0xf8, 0xf5, 0xdc, 0xeb, 0x27, 0x14, 0xf1, 0xde, 0xe2, 0xdb,
0xf0, 0xde, 0x31, 0x06, 0x02, 0xe6, 0xee, 0xf9, 0x00, 0x16, 0x07, 0xe0,
0xfe, 0xff, 0xe9, 0x06, 0xe7, 0xef, 0x81, 0x1b, 0x18, 0xea, 0xc9, 0x01,
0x0f, 0x00, 0xda, 0xf7, 0x0e, 0xec, 0x13, 0x1f, 0x04, 0x13, 0xb4, 0xe6,
0xfd, 0x06, 0xb9, 0xe0, 0x0d, 0xec, 0xf0, 0xde, 0xeb, 0xf7, 0x05, 0x26,
0x1a, 0xe4, 0x6f, 0x1a, 0xea, 0x1e, 0x35, 0xdf, 0x1a, 0xf3, 0xf1, 0x19,
0x0f, 0x03, 0x1b, 0xe1, 0xde, 0x13, 0xf6, 0x19, 0xff, 0xf6, 0x1b, 0x18,
0xf0, 0x1c, 0xda, 0x1b, 0x1b, 0x20, 0xe5, 0x1a, 0xf5, 0xff, 0x96, 0x0b,
0x00, 0x01, 0xcd, 0xde, 0x0d, 0xf6, 0x16, 0xe3, 0xed, 0xfc, 0x0e, 0xe9,
0xfa, 0xeb, 0x5c, 0xfc, 0x1d, 0x02, 0x5b, 0xe2, 0xe1, 0xf5, 0x15, 0xec,
0xf4, 0x00, 0x13, 0x05, 0xec, 0x0c, 0x1d, 0x14, 0x0e, 0xe7, 0x0b, 0xf4,
0x19, 0x00, 0xd7, 0x05, 0x27, 0x02, 0x15, 0xea, 0xea, 0x02, 0x9b, 0x00,
0x0c, 0xfa, 0xe8, 0xea, 0xfd, 0x00, 0x14, 0xfd, 0x0b, 0x02, 0xef, 0xee,
0x06, 0xee, 0x01, 0x0d, 0x06, 0xe6, 0xf7, 0x11, 0xf7, 0x09, 0xf8, 0xf1,
0x21, 0xff, 0x0e, 0xf3, 0xec, 0x12, 0x26, 0x1d, 0xf2, 0xe9, 0x28, 0x18,
0xe0, 0xfb, 0xf3, 0xf4, 0x05, 0x1d, 0x1d, 0xfb, 0xfd, 0x1e, 0xfc, 0x11,
0xe8, 0x07, 0x09, 0x03, 0x12, 0xf2, 0x36, 0xfb, 0xdc, 0x1c, 0xf9, 0xef,
0xf3, 0xe7, 0x6f, 0x0c, 0x1d, 0x00, 0x45, 0xfd, 0x0e, 0xf0, 0x0b, 0x19,
0x1a, 0xfa, 0xe0, 0x19, 0x1f, 0x13, 0x36, 0x1c, 0x12, 0xeb, 0x3b, 0x0c,
0xb4, 0xcb, 0xe6, 0x13, 0xfa, 0xeb, 0xf1, 0x06, 0x1c, 0xfa, 0x18, 0xe5,
0xeb, 0xcb, 0x0c, 0xf4, 0x4a, 0xff, 0xff, 0xff, 0x04, 0x00, 0x00, 0x00,
0x10, 0x00, 0x00, 0x00, 0x75, 0x1c, 0x11, 0xe1, 0x0c, 0x81, 0xa5, 0x42,
0xfe, 0xd5, 0xd4, 0xb2, 0x61, 0x78, 0x19, 0xdf, 0x66, 0xff, 0xff, 0xff,
0x04, 0x00, 0x00, 0x00, 0x40, 0x00, 0x00, 0x00, 0x04, 0x00, 0x00, 0x00,
0x77, 0x0b, 0x00, 0x00, 0x53, 0xf6, 0xff, 0xff, 0x00, 0x00, 0x00, 0x00,
0x77, 0x0c, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
0xd3, 0x06, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
0x72, 0x21, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x2f, 0x07, 0x00, 0x00,
0x67, 0xf5, 0xff, 0xff, 0x34, 0xf0, 0xff, 0xff, 0x00, 0x00, 0x00, 0x00,
0xb2, 0xff, 0xff, 0xff, 0x04, 0x00, 0x00, 0x00, 0x40, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00, 0xb5, 0x04, 0x00, 0x00, 0x78, 0x0a, 0x00, 0x00,
0x2d, 0x06, 0x00, 0x00, 0x71, 0xf8, 0xff, 0xff, 0x00, 0x00, 0x00, 0x00,
0x9a, 0x0a, 0x00, 0x00, 0xfe, 0xf7, 0xff, 0xff, 0x0e, 0x05, 0x00, 0x00,
0xd4, 0x09, 0x00, 0x00, 0x47, 0xfe, 0xff, 0xff, 0xb6, 0x04, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00, 0xac, 0xf7, 0xff, 0xff, 0x4b, 0xf9, 0xff, 0xff,
0x4a, 0x05, 0x00, 0x00, 0x00, 0x00, 0x06, 0x00, 0x08, 0x00, 0x04, 0x00,
0x06, 0x00, 0x00, 0x00, 0x04, 0x00, 0x00, 0x00, 0x04, 0x00, 0x00, 0x00,
0x8c, 0xef, 0xff, 0xff, 0x84, 0xff, 0xff, 0xff, 0x88, 0xff, 0xff, 0xff,
0x0f, 0x00, 0x00, 0x00, 0x4d, 0x4c, 0x49, 0x52, 0x20, 0x43, 0x6f, 0x6e,
0x76, 0x65, 0x72, 0x74, 0x65, 0x64, 0x2e, 0x00, 0x01, 0x00, 0x00, 0x00,
0x14, 0x00, 0x00, 0x00, 0x00, 0x00, 0x0e, 0x00, 0x18, 0x00, 0x14, 0x00,
0x10, 0x00, 0x0c, 0x00, 0x08, 0x00, 0x04, 0x00, 0x0e, 0x00, 0x00, 0x00,
0x14, 0x00, 0x00, 0x00, 0x1c, 0x00, 0x00, 0x00, 0xdc, 0x00, 0x00, 0x00,
0xe0, 0x00, 0x00, 0x00, 0xe4, 0x00, 0x00, 0x00, 0x04, 0x00, 0x00, 0x00,
0x6d, 0x61, 0x69, 0x6e, 0x00, 0x00, 0x00, 0x00, 0x03, 0x00, 0x00, 0x00,
0x84, 0x00, 0x00, 0x00, 0x3c, 0x00, 0x00, 0x00, 0x04, 0x00, 0x00, 0x00,
0x96, 0xff, 0xff, 0xff, 0x14, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x08,
0x10, 0x00, 0x00, 0x00, 0x14, 0x00, 0x00, 0x00, 0x04, 0x00, 0x04, 0x00,
0x04, 0x00, 0x00, 0x00, 0x01, 0x00, 0x00, 0x00, 0x09, 0x00, 0x00, 0x00,
0x03, 0x00, 0x00, 0x00, 0x08, 0x00, 0x00, 0x00, 0x06, 0x00, 0x00, 0x00,
0x01, 0x00, 0x00, 0x00, 0xca, 0xff, 0xff, 0xff, 0x10, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x08, 0x10, 0x00, 0x00, 0x00, 0x14, 0x00, 0x00, 0x00,
0xba, 0xff, 0xff, 0xff, 0x00, 0x00, 0x00, 0x01, 0x01, 0x00, 0x00, 0x00,
0x08, 0x00, 0x00, 0x00, 0x03, 0x00, 0x00, 0x00, 0x07, 0x00, 0x00, 0x00,
0x05, 0x00, 0x00, 0x00, 0x02, 0x00, 0x00, 0x00, 0x00, 0x00, 0x0e, 0x00,
0x16, 0x00, 0x00, 0x00, 0x10, 0x00, 0x0c, 0x00, 0x0b, 0x00, 0x04, 0x00,
0x0e, 0x00, 0x00, 0x00, 0x18, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x08,
0x18, 0x00, 0x00, 0x00, 0x1c, 0x00, 0x00, 0x00, 0x00, 0x00, 0x06, 0x00,
0x08, 0x00, 0x07, 0x00, 0x06, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x01,
0x01, 0x00, 0x00, 0x00, 0x07, 0x00, 0x00, 0x00, 0x03, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00, 0x04, 0x00, 0x00, 0x00, 0x03, 0x00, 0x00, 0x00,
0x01, 0x00, 0x00, 0x00, 0x09, 0x00, 0x00, 0x00, 0x01, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00, 0x0a, 0x00, 0x00, 0x00, 0x4c, 0x04, 0x00, 0x00,
0xd0, 0x03, 0x00, 0x00, 0x68, 0x03, 0x00, 0x00, 0x0c, 0x03, 0x00, 0x00,
0x98, 0x02, 0x00, 0x00, 0x24, 0x02, 0x00, 0x00, 0xb0, 0x01, 0x00, 0x00,
0x24, 0x01, 0x00, 0x00, 0x98, 0x00, 0x00, 0x00, 0x04, 0x00, 0x00, 0x00,
0xf0, 0xfb, 0xff, 0xff, 0x18, 0x00, 0x00, 0x00, 0x20, 0x00, 0x00, 0x00,
0x54, 0x00, 0x00, 0x00, 0x0a, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x09,
0x6c, 0x00, 0x00, 0x00, 0x02, 0x00, 0x00, 0x00, 0xff, 0xff, 0xff, 0xff,
0x01, 0x00, 0x00, 0x00, 0xdc, 0xfb, 0xff, 0xff, 0x10, 0x00, 0x00, 0x00,
0x18, 0x00, 0x00, 0x00, 0x1c, 0x00, 0x00, 0x00, 0x20, 0x00, 0x00, 0x00,
0x01, 0x00, 0x00, 0x00, 0x04, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
0x01, 0x00, 0x00, 0x00, 0x4a, 0xce, 0x0a, 0x3c, 0x01, 0x00, 0x00, 0x00,
0x34, 0x84, 0x85, 0x3f, 0x01, 0x00, 0x00, 0x00, 0xc5, 0x02, 0x8f, 0xbf,
0x1e, 0x00, 0x00, 0x00, 0x53, 0x74, 0x61, 0x74, 0x65, 0x66, 0x75, 0x6c,
0x50, 0x61, 0x72, 0x74, 0x69, 0x74, 0x69, 0x6f, 0x6e, 0x65, 0x64, 0x43,
0x61, 0x6c, 0x6c, 0x3a, 0x30, 0x5f, 0x69, 0x6e, 0x74, 0x38, 0x00, 0x00,
0x02, 0x00, 0x00, 0x00, 0x01, 0x00, 0x00, 0x00, 0x01, 0x00, 0x00, 0x00,
0x80, 0xfc, 0xff, 0xff, 0x18, 0x00, 0x00, 0x00, 0x20, 0x00, 0x00, 0x00,
0x54, 0x00, 0x00, 0x00, 0x09, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x09,
0x64, 0x00, 0x00, 0x00, 0x02, 0x00, 0x00, 0x00, 0xff, 0xff, 0xff, 0xff,
0x10, 0x00, 0x00, 0x00, 0x6c, 0xfc, 0xff, 0xff, 0x10, 0x00, 0x00, 0x00,
0x18, 0x00, 0x00, 0x00, 0x1c, 0x00, 0x00, 0x00, 0x20, 0x00, 0x00, 0x00,
0x01, 0x00, 0x00, 0x00, 0x80, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
0x01, 0x00, 0x00, 0x00, 0x93, 0xd0, 0xc0, 0x3b, 0x01, 0x00, 0x00, 0x00,
0xc2, 0x0f, 0xc0, 0x3f, 0x01, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
0x14, 0x00, 0x00, 0x00, 0x74, 0x66, 0x6c, 0x2e, 0x66, 0x75, 0x6c, 0x6c,
0x79, 0x5f, 0x63, 0x6f, 0x6e, 0x6e, 0x65, 0x63, 0x74, 0x65, 0x64, 0x31,
0x00, 0x00, 0x00, 0x00, 0x02, 0x00, 0x00, 0x00, 0x01, 0x00, 0x00, 0x00,
0x10, 0x00, 0x00, 0x00, 0x08, 0xfd, 0xff, 0xff, 0x18, 0x00, 0x00, 0x00,
0x20, 0x00, 0x00, 0x00, 0x58, 0x00, 0x00, 0x00, 0x08, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x09, 0x64, 0x00, 0x00, 0x00, 0x02, 0x00, 0x00, 0x00,
0xff, 0xff, 0xff, 0xff, 0x10, 0x00, 0x00, 0x00, 0xf4, 0xfc, 0xff, 0xff,
0x10, 0x00, 0x00, 0x00, 0x1c, 0x00, 0x00, 0x00, 0x20, 0x00, 0x00, 0x00,
0x24, 0x00, 0x00, 0x00, 0x01, 0x00, 0x00, 0x00, 0x80, 0xff, 0xff, 0xff,
0xff, 0xff, 0xff, 0xff, 0x00, 0x00, 0x00, 0x00, 0x01, 0x00, 0x00, 0x00,
0xe0, 0xdb, 0x47, 0x3c, 0x01, 0x00, 0x00, 0x00, 0x04, 0x14, 0x47, 0x40,
0x01, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x13, 0x00, 0x00, 0x00,
0x74, 0x66, 0x6c, 0x2e, 0x66, 0x75, 0x6c, 0x6c, 0x79, 0x5f, 0x63, 0x6f,
0x6e, 0x6e, 0x65, 0x63, 0x74, 0x65, 0x64, 0x00, 0x02, 0x00, 0x00, 0x00,
0x01, 0x00, 0x00, 0x00, 0x10, 0x00, 0x00, 0x00, 0x02, 0xfe, 0xff, 0xff,
0x14, 0x00, 0x00, 0x00, 0x48, 0x00, 0x00, 0x00, 0x07, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x09, 0x50, 0x00, 0x00, 0x00, 0x6c, 0xfd, 0xff, 0xff,
0x10, 0x00, 0x00, 0x00, 0x18, 0x00, 0x00, 0x00, 0x1c, 0x00, 0x00, 0x00,
0x20, 0x00, 0x00, 0x00, 0x01, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00, 0x01, 0x00, 0x00, 0x00, 0xfb, 0x4b, 0x0b, 0x3c,
0x01, 0x00, 0x00, 0x00, 0x40, 0x84, 0x4b, 0x3f, 0x01, 0x00, 0x00, 0x00,
0x63, 0x35, 0x8a, 0xbf, 0x0d, 0x00, 0x00, 0x00, 0x73, 0x74, 0x64, 0x2e,
0x63, 0x6f, 0x6e, 0x73, 0x74, 0x61, 0x6e, 0x74, 0x32, 0x00, 0x00, 0x00,
0x02, 0x00, 0x00, 0x00, 0x01, 0x00, 0x00, 0x00, 0x10, 0x00, 0x00, 0x00,
0x72, 0xfe, 0xff, 0xff, 0x14, 0x00, 0x00, 0x00, 0x48, 0x00, 0x00, 0x00,
0x06, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x09, 0x50, 0x00, 0x00, 0x00,
0xdc, 0xfd, 0xff, 0xff, 0x10, 0x00, 0x00, 0x00, 0x18, 0x00, 0x00, 0x00,
0x1c, 0x00, 0x00, 0x00, 0x20, 0x00, 0x00, 0x00, 0x01, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x01, 0x00, 0x00, 0x00,
0x60, 0x01, 0x4f, 0x3c, 0x01, 0x00, 0x00, 0x00, 0x47, 0x6d, 0xb3, 0x3f,
0x01, 0x00, 0x00, 0x00, 0x5d, 0x63, 0xcd, 0xbf, 0x0d, 0x00, 0x00, 0x00,
0x73, 0x74, 0x64, 0x2e, 0x63, 0x6f, 0x6e, 0x73, 0x74, 0x61, 0x6e, 0x74,
0x31, 0x00, 0x00, 0x00, 0x02, 0x00, 0x00, 0x00, 0x10, 0x00, 0x00, 0x00,
0x10, 0x00, 0x00, 0x00, 0xe2, 0xfe, 0xff, 0xff, 0x14, 0x00, 0x00, 0x00,
0x48, 0x00, 0x00, 0x00, 0x05, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x09,
0x50, 0x00, 0x00, 0x00, 0x4c, 0xfe, 0xff, 0xff, 0x10, 0x00, 0x00, 0x00,
0x18, 0x00, 0x00, 0x00, 0x1c, 0x00, 0x00, 0x00, 0x20, 0x00, 0x00, 0x00,
0x01, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
0x01, 0x00, 0x00, 0x00, 0xd5, 0x6b, 0x8a, 0x3b, 0x01, 0x00, 0x00, 0x00,
0xab, 0x49, 0x01, 0x3f, 0x01, 0x00, 0x00, 0x00, 0xfd, 0x56, 0x09, 0xbf,
0x0c, 0x00, 0x00, 0x00, 0x73, 0x74, 0x64, 0x2e, 0x63, 0x6f, 0x6e, 0x73,
0x74, 0x61, 0x6e, 0x74, 0x00, 0x00, 0x00, 0x00, 0x02, 0x00, 0x00, 0x00,
0x10, 0x00, 0x00, 0x00, 0x01, 0x00, 0x00, 0x00, 0x52, 0xff, 0xff, 0xff,
0x14, 0x00, 0x00, 0x00, 0x34, 0x00, 0x00, 0x00, 0x04, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x02, 0x3c, 0x00, 0x00, 0x00, 0x44, 0xff, 0xff, 0xff,
0x08, 0x00, 0x00, 0x00, 0x14, 0x00, 0x00, 0x00, 0x01, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
0x01, 0x00, 0x00, 0x00, 0x28, 0xb3, 0xd9, 0x38, 0x0c, 0x00, 0x00, 0x00,
0x64, 0x65, 0x6e, 0x73, 0x65, 0x5f, 0x32, 0x2f, 0x62, 0x69, 0x61, 0x73,
0x00, 0x00, 0x00, 0x00, 0x01, 0x00, 0x00, 0x00, 0x10, 0x00, 0x00, 0x00,
0xaa, 0xff, 0xff, 0xff, 0x14, 0x00, 0x00, 0x00, 0x30, 0x00, 0x00, 0x00,
0x03, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x02, 0x38, 0x00, 0x00, 0x00,
0x9c, 0xff, 0xff, 0xff, 0x08, 0x00, 0x00, 0x00, 0x10, 0x00, 0x00, 0x00,
0x01, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
0x01, 0x00, 0x00, 0x00, 0xdd, 0x9b, 0x21, 0x39, 0x0c, 0x00, 0x00, 0x00,
0x64, 0x65, 0x6e, 0x73, 0x65, 0x5f, 0x33, 0x2f, 0x62, 0x69, 0x61, 0x73,
0x00, 0x00, 0x00, 0x00, 0x01, 0x00, 0x00, 0x00, 0x10, 0x00, 0x00, 0x00,
0x00, 0x00, 0x0e, 0x00, 0x18, 0x00, 0x14, 0x00, 0x13, 0x00, 0x0c, 0x00,
0x08, 0x00, 0x04, 0x00, 0x0e, 0x00, 0x00, 0x00, 0x20, 0x00, 0x00, 0x00,
0x40, 0x00, 0x00, 0x00, 0x02, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x02,
0x48, 0x00, 0x00, 0x00, 0x0c, 0x00, 0x0c, 0x00, 0x00, 0x00, 0x00, 0x00,
0x08, 0x00, 0x04, 0x00, 0x0c, 0x00, 0x00, 0x00, 0x08, 0x00, 0x00, 0x00,
0x14, 0x00, 0x00, 0x00, 0x01, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x01, 0x00, 0x00, 0x00,
0xf4, 0xd4, 0x51, 0x38, 0x0c, 0x00, 0x00, 0x00, 0x64, 0x65, 0x6e, 0x73,
0x65, 0x5f, 0x34, 0x2f, 0x62, 0x69, 0x61, 0x73, 0x00, 0x00, 0x00, 0x00,
0x01, 0x00, 0x00, 0x00, 0x01, 0x00, 0x00, 0x00, 0x14, 0x00, 0x1c, 0x00,
0x18, 0x00, 0x17, 0x00, 0x10, 0x00, 0x0c, 0x00, 0x08, 0x00, 0x00, 0x00,
0x00, 0x00, 0x04, 0x00, 0x14, 0x00, 0x00, 0x00, 0x18, 0x00, 0x00, 0x00,
0x2c, 0x00, 0x00, 0x00, 0x64, 0x00, 0x00, 0x00, 0x01, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x09, 0x84, 0x00, 0x00, 0x00, 0x02, 0x00, 0x00, 0x00,
0xff, 0xff, 0xff, 0xff, 0x01, 0x00, 0x00, 0x00, 0x0c, 0x00, 0x14, 0x00,
0x10, 0x00, 0x0c, 0x00, 0x08, 0x00, 0x04, 0x00, 0x0c, 0x00, 0x00, 0x00,
0x10, 0x00, 0x00, 0x00, 0x1c, 0x00, 0x00, 0x00, 0x20, 0x00, 0x00, 0x00,
0x24, 0x00, 0x00, 0x00, 0x01, 0x00, 0x00, 0x00, 0x80, 0xff, 0xff, 0xff,
0xff, 0xff, 0xff, 0xff, 0x00, 0x00, 0x00, 0x00, 0x01, 0x00, 0x00, 0x00,
0x5d, 0x4f, 0xc9, 0x3c, 0x01, 0x00, 0x00, 0x00, 0x0e, 0x86, 0xc8, 0x40,
0x01, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x24, 0x00, 0x00, 0x00,
0x73, 0x65, 0x72, 0x76, 0x69, 0x6e, 0x67, 0x5f, 0x64, 0x65, 0x66, 0x61,
0x75, 0x6c, 0x74, 0x5f, 0x64, 0x65, 0x6e, 0x73, 0x65, 0x5f, 0x32, 0x5f,
0x69, 0x6e, 0x70, 0x75, 0x74, 0x3a, 0x30, 0x5f, 0x69, 0x6e, 0x74, 0x38,
0x00, 0x00, 0x00, 0x00, 0x02, 0x00, 0x00, 0x00, 0x01, 0x00, 0x00, 0x00,
0x01, 0x00, 0x00, 0x00, 0x03, 0x00, 0x00, 0x00, 0x40, 0x00, 0x00, 0x00,
0x24, 0x00, 0x00, 0x00, 0x04, 0x00, 0x00, 0x00, 0xd8, 0xff, 0xff, 0xff,
0x06, 0x00, 0x00, 0x00, 0x02, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x06,
0x0c, 0x00, 0x0c, 0x00, 0x0b, 0x00, 0x00, 0x00, 0x00, 0x00, 0x04, 0x00,
0x0c, 0x00, 0x00, 0x00, 0x72, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x72,
0x0c, 0x00, 0x10, 0x00, 0x0f, 0x00, 0x00, 0x00, 0x08, 0x00, 0x04, 0x00,
0x0c, 0x00, 0x00, 0x00, 0x09, 0x00, 0x00, 0x00, 0x04, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x09};
const int g_model_len = 2488;

View File

@ -1,31 +0,0 @@
/* Copyright 2020 The TensorFlow Authors. All Rights Reserved.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
==============================================================================*/
// Automatically created from a TensorFlow Lite flatbuffer using the command:
// xxd -i model.tflite > model.cc
// This is a standard TensorFlow Lite model file that has been converted into a
// C data array, so it can be easily compiled into a binary for devices that
// don't have a file system.
// See train/README.md for a full description of the creation process.
#ifndef TENSORFLOW_LITE_MICRO_EXAMPLES_HELLO_WORLD_MODEL_H_
#define TENSORFLOW_LITE_MICRO_EXAMPLES_HELLO_WORLD_MODEL_H_
extern const unsigned char g_model[];
extern const int g_model_len;
#endif // TENSORFLOW_LITE_MICRO_EXAMPLES_HELLO_WORLD_MODEL_H_

View File

@ -1,24 +0,0 @@
/* Copyright 2019 The TensorFlow Authors. All Rights Reserved.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
==============================================================================*/
#include "output_handler.h"
void HandleOutput(tflite::ErrorReporter* error_reporter, float x_value,
float y_value) {
// Log the current X and Y values
TF_LITE_REPORT_ERROR(error_reporter, "x_value: %f, y_value: %f\n",
static_cast<double>(x_value),
static_cast<double>(y_value));
}

View File

@ -1,26 +0,0 @@
/* Copyright 2019 The TensorFlow Authors. All Rights Reserved.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
==============================================================================*/
#ifndef TENSORFLOW_LITE_MICRO_EXAMPLES_HELLO_WORLD_OUTPUT_HANDLER_H_
#define TENSORFLOW_LITE_MICRO_EXAMPLES_HELLO_WORLD_OUTPUT_HANDLER_H_
#include "tensorflow/lite/c/common.h"
#include "tensorflow/lite/micro/micro_error_reporter.h"
// Called by the main loop to produce some output based on the x and y values
void HandleOutput(tflite::ErrorReporter* error_reporter, float x_value,
float y_value);
#endif // TENSORFLOW_LITE_MICRO_EXAMPLES_HELLO_WORLD_OUTPUT_HANDLER_H_

View File

@ -1,33 +0,0 @@
/* Copyright 2019 The TensorFlow Authors. All Rights Reserved.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
==============================================================================*/
#include <xiuos.h>
#include "main_functions.h"
// This is the default main used on systems that have the standard C entry
// point. Other devices (for example FreeRTOS or ESP32) that have different
// requirements for entry code (like an app_main function) should specialize
// this main.cc file in a target-specific subfolder.
int tfsin(void) {
setup();
int count = 10;
while (count--) {
loop();
}
}
SHELL_EXPORT_CMD(SHELL_CMD_PERMISSION(0)|SHELL_CMD_TYPE(SHELL_TYPE_CMD_FUNC)|SHELL_CMD_PARAM_NUM(0), tfsin, tfsin, run sin demo of tflite);

View File

@ -3,6 +3,5 @@ menuconfig SUPPORT_KNOWING_FRAMEWORK
default y default y
if SUPPORT_KNOWING_FRAMEWORK if SUPPORT_KNOWING_FRAMEWORK
source "$APP_DIR/Framework/know/tflite_sin/Kconfig"
source "$APP_DIR/Framework/know/tflite_mnist/Kconfig"
endif endif

View File

@ -394,11 +394,58 @@ CONFIG_PKG_KENDRYTE_SDK_VERNUM=0x0055
# CONFIG_PKG_USING_RW007 is not set # CONFIG_PKG_USING_RW007 is not set
# CONFIG_DRV_USING_OV2640 is not set # CONFIG_DRV_USING_OV2640 is not set
#
# APP_Framework
#
# #
# Applications # Applications
# #
#
# config stack size and priority of main task
#
CONFIG_MAIN_KTASK_STACK_SIZE=1024
#
# test app
#
# CONFIG_USER_TEST is not set
#
# connection app
#
#
# control app
#
# CONFIG_APPLICATION_CONTROL is not set
#
# knowing app
#
# CONFIG_APPLICATION_KNOWING is not set
#
# sensor app
#
# CONFIG_APPLICATION_SENSOR is not set
# #
# Framework # Framework
# #
CONFIG_TRANSFORM_LAYER_ATTRIUBUTE=y
CONFIG_ADD_XIUOS_FETURES=y
# CONFIG_ADD_NUTTX_FETURES is not set
# CONFIG_ADD_RTTHREAD_FETURES is not set
# CONFIG_SUPPORT_SENSOR_FRAMEWORK is not set
# CONFIG_SUPPORT_CONNECTION_FRAMEWORK is not set
CONFIG_SUPPORT_KNOWING_FRAMEWORK=y
# CONFIG_SUPPORT_CONTROL_FRAMEWORK is not set
#
# app lib
#
CONFIG_APP_SELECT_NEWLIB=y
# CONFIG_APP_SELECT_OTHER_LIB is not set
CONFIG___STACKSIZE__=4096 CONFIG___STACKSIZE__=4096

View File

@ -24,12 +24,15 @@ config BOARD_K210_EVB
select RT_USING_USER_MAIN select RT_USING_USER_MAIN
default y default y
config APP_DIR
string
default "../../../../APP_Framework"
source "$RTT_DIR/Kconfig" source "$RTT_DIR/Kconfig"
source "base-drivers/Kconfig" source "base-drivers/Kconfig"
source "kendryte-sdk/Kconfig" source "kendryte-sdk/Kconfig"
source "$RT_Thread_DIR/drivers/Kconfig" source "$RT_Thread_DIR/drivers/Kconfig"
source "$ROOT_DIR/APP_Framework/Applications/Kconfig" source "$ROOT_DIR/APP_Framework/Kconfig"
source "$ROOT_DIR/APP_Framework/Framework/Kconfig"
config __STACKSIZE__ config __STACKSIZE__
int "stack size for interrupt" int "stack size for interrupt"

View File

@ -263,10 +263,37 @@
/* More Drivers */ /* More Drivers */
/* APP_Framework */
/* Applications */ /* Applications */
/* config stack size and priority of main task */
#define MAIN_KTASK_STACK_SIZE 1024
/* test app */
/* connection app */
/* control app */
/* knowing app */
/* sensor app */
/* Framework */ /* Framework */
#define TRANSFORM_LAYER_ATTRIUBUTE
#define ADD_XIUOS_FETURES
#define SUPPORT_KNOWING_FRAMEWORK
/* app lib */
#define APP_SELECT_NEWLIB
#define __STACKSIZE__ 4096 #define __STACKSIZE__ 4096
#endif #endif

View File

@ -34,7 +34,7 @@ CONFIG_RT_TIMER_THREAD_STACK_SIZE=512
# CONFIG_RT_KSERVICE_USING_STDLIB is not set # CONFIG_RT_KSERVICE_USING_STDLIB is not set
# CONFIG_RT_KSERVICE_USING_TINY_SIZE is not set # CONFIG_RT_KSERVICE_USING_TINY_SIZE is not set
CONFIG_RT_DEBUG=y CONFIG_RT_DEBUG=y
CONFIG_RT_DEBUG_COLOR=y # CONFIG_RT_DEBUG_COLOR is not set
# CONFIG_RT_DEBUG_INIT_CONFIG is not set # CONFIG_RT_DEBUG_INIT_CONFIG is not set
# CONFIG_RT_DEBUG_THREAD_CONFIG is not set # CONFIG_RT_DEBUG_THREAD_CONFIG is not set
# CONFIG_RT_DEBUG_SCHEDULER_CONFIG is not set # CONFIG_RT_DEBUG_SCHEDULER_CONFIG is not set
@ -60,11 +60,10 @@ CONFIG_RT_USING_MESSAGEQUEUE=y
# Memory Management # Memory Management
# #
CONFIG_RT_USING_MEMPOOL=y CONFIG_RT_USING_MEMPOOL=y
CONFIG_RT_USING_MEMHEAP=y # CONFIG_RT_USING_MEMHEAP is not set
# CONFIG_RT_USING_NOHEAP is not set # CONFIG_RT_USING_NOHEAP is not set
# CONFIG_RT_USING_SMALL_MEM is not set CONFIG_RT_USING_SMALL_MEM=y
# CONFIG_RT_USING_SLAB is not set # CONFIG_RT_USING_SLAB is not set
CONFIG_RT_USING_MEMHEAP_AS_HEAP=y
# CONFIG_RT_USING_USERHEAP is not set # CONFIG_RT_USING_USERHEAP is not set
# CONFIG_RT_USING_MEMTRACE is not set # CONFIG_RT_USING_MEMTRACE is not set
CONFIG_RT_USING_HEAP=y CONFIG_RT_USING_HEAP=y
@ -77,7 +76,7 @@ CONFIG_RT_USING_DEVICE=y
# CONFIG_RT_USING_INTERRUPT_INFO is not set # CONFIG_RT_USING_INTERRUPT_INFO is not set
CONFIG_RT_USING_CONSOLE=y CONFIG_RT_USING_CONSOLE=y
CONFIG_RT_CONSOLEBUF_SIZE=128 CONFIG_RT_CONSOLEBUF_SIZE=128
CONFIG_RT_CONSOLE_DEVICE_NAME="uart1" CONFIG_RT_CONSOLE_DEVICE_NAME="uart"
CONFIG_RT_VER_NUM=0x40004 CONFIG_RT_VER_NUM=0x40004
CONFIG_ARCH_ARM=y CONFIG_ARCH_ARM=y
CONFIG_RT_USING_CPU_FFS=y CONFIG_RT_USING_CPU_FFS=y
@ -96,7 +95,7 @@ CONFIG_RT_MAIN_THREAD_PRIORITY=10
# #
# C++ features # C++ features
# #
CONFIG_RT_USING_CPLUSPLUS=y # CONFIG_RT_USING_CPLUSPLUS is not set
# #
# Command shell # Command shell
@ -114,7 +113,7 @@ CONFIG_FINSH_CMD_SIZE=80
# CONFIG_FINSH_USING_AUTH is not set # CONFIG_FINSH_USING_AUTH is not set
CONFIG_FINSH_USING_MSH=y CONFIG_FINSH_USING_MSH=y
CONFIG_FINSH_USING_MSH_DEFAULT=y CONFIG_FINSH_USING_MSH_DEFAULT=y
CONFIG_FINSH_USING_MSH_ONLY=y # CONFIG_FINSH_USING_MSH_ONLY is not set
CONFIG_FINSH_ARG_MAX=10 CONFIG_FINSH_ARG_MAX=10
# #
@ -122,8 +121,8 @@ CONFIG_FINSH_ARG_MAX=10
# #
CONFIG_RT_USING_DFS=y CONFIG_RT_USING_DFS=y
CONFIG_DFS_USING_WORKDIR=y CONFIG_DFS_USING_WORKDIR=y
CONFIG_DFS_FILESYSTEMS_MAX=2 CONFIG_DFS_FILESYSTEMS_MAX=4
CONFIG_DFS_FILESYSTEM_TYPES_MAX=2 CONFIG_DFS_FILESYSTEM_TYPES_MAX=4
CONFIG_DFS_FD_MAX=16 CONFIG_DFS_FD_MAX=16
# CONFIG_RT_USING_DFS_MNTTABLE is not set # CONFIG_RT_USING_DFS_MNTTABLE is not set
CONFIG_RT_USING_DFS_ELMFAT=y CONFIG_RT_USING_DFS_ELMFAT=y
@ -151,16 +150,13 @@ CONFIG_RT_DFS_ELM_REENTRANT=y
CONFIG_RT_USING_DFS_DEVFS=y CONFIG_RT_USING_DFS_DEVFS=y
# CONFIG_RT_USING_DFS_ROMFS is not set # CONFIG_RT_USING_DFS_ROMFS is not set
# CONFIG_RT_USING_DFS_RAMFS is not set # CONFIG_RT_USING_DFS_RAMFS is not set
# CONFIG_RT_USING_DFS_NFS is not set
# #
# Device Drivers # Device Drivers
# #
CONFIG_RT_USING_DEVICE_IPC=y CONFIG_RT_USING_DEVICE_IPC=y
CONFIG_RT_PIPE_BUFSZ=512 CONFIG_RT_PIPE_BUFSZ=512
CONFIG_RT_USING_SYSTEM_WORKQUEUE=y # CONFIG_RT_USING_SYSTEM_WORKQUEUE is not set
CONFIG_RT_SYSTEM_WORKQUEUE_STACKSIZE=2048
CONFIG_RT_SYSTEM_WORKQUEUE_PRIORITY=23
CONFIG_RT_USING_SERIAL=y CONFIG_RT_USING_SERIAL=y
CONFIG_RT_SERIAL_USING_DMA=y CONFIG_RT_SERIAL_USING_DMA=y
CONFIG_RT_SERIAL_RB_BUFSZ=64 CONFIG_RT_SERIAL_RB_BUFSZ=64
@ -194,33 +190,7 @@ CONFIG_RT_USING_SPI_MSD=y
# CONFIG_RT_USING_HWCRYPTO is not set # CONFIG_RT_USING_HWCRYPTO is not set
# CONFIG_RT_USING_PULSE_ENCODER is not set # CONFIG_RT_USING_PULSE_ENCODER is not set
# CONFIG_RT_USING_INPUT_CAPTURE is not set # CONFIG_RT_USING_INPUT_CAPTURE is not set
CONFIG_RT_USING_WIFI=y # CONFIG_RT_USING_WIFI is not set
CONFIG_RT_WLAN_DEVICE_STA_NAME="wlan0"
CONFIG_RT_WLAN_DEVICE_AP_NAME="wlan1"
CONFIG_RT_WLAN_SSID_MAX_LENGTH=32
CONFIG_RT_WLAN_PASSWORD_MAX_LENGTH=32
CONFIG_RT_WLAN_DEV_EVENT_NUM=2
CONFIG_RT_WLAN_MANAGE_ENABLE=y
CONFIG_RT_WLAN_SCAN_WAIT_MS=10000
CONFIG_RT_WLAN_CONNECT_WAIT_MS=10000
CONFIG_RT_WLAN_SCAN_SORT=y
CONFIG_RT_WLAN_MSH_CMD_ENABLE=y
CONFIG_RT_WLAN_AUTO_CONNECT_ENABLE=y
CONFIG_AUTO_CONNECTION_PERIOD_MS=2000
CONFIG_RT_WLAN_CFG_ENABLE=y
CONFIG_RT_WLAN_CFG_INFO_MAX=3
CONFIG_RT_WLAN_PROT_ENABLE=y
CONFIG_RT_WLAN_PROT_NAME_LEN=8
CONFIG_RT_WLAN_PROT_MAX=2
CONFIG_RT_WLAN_DEFAULT_PROT="lwip"
CONFIG_RT_WLAN_PROT_LWIP_ENABLE=y
CONFIG_RT_WLAN_PROT_LWIP_NAME="lwip"
# CONFIG_RT_WLAN_PROT_LWIP_PBUF_FORCE is not set
CONFIG_RT_WLAN_WORK_THREAD_ENABLE=y
CONFIG_RT_WLAN_WORKQUEUE_THREAD_NAME="wlan"
CONFIG_RT_WLAN_WORKQUEUE_THREAD_SIZE=2048
CONFIG_RT_WLAN_WORKQUEUE_THREAD_PRIO=15
# CONFIG_RT_WLAN_DEBUG is not set
# #
# Using USB # Using USB
@ -248,91 +218,22 @@ CONFIG_RT_LIBC_FIXED_TIMEZONE=8
# #
# Socket abstraction layer # Socket abstraction layer
# #
CONFIG_RT_USING_SAL=y # CONFIG_RT_USING_SAL is not set
CONFIG_SAL_INTERNET_CHECK=y
#
# protocol stack implement
#
CONFIG_SAL_USING_LWIP=y
CONFIG_SAL_USING_POSIX=y
# #
# Network interface device # Network interface device
# #
CONFIG_RT_USING_NETDEV=y # CONFIG_RT_USING_NETDEV is not set
CONFIG_NETDEV_USING_IFCONFIG=y
CONFIG_NETDEV_USING_PING=y
CONFIG_NETDEV_USING_NETSTAT=y
CONFIG_NETDEV_USING_AUTO_DEFAULT=y
# CONFIG_NETDEV_USING_IPV6 is not set
CONFIG_NETDEV_IPV4=1
CONFIG_NETDEV_IPV6=0
# CONFIG_NETDEV_IPV6_SCOPES is not set
# #
# light weight TCP/IP stack # light weight TCP/IP stack
# #
CONFIG_RT_USING_LWIP=y # CONFIG_RT_USING_LWIP is not set
# CONFIG_RT_USING_LWIP141 is not set
CONFIG_RT_USING_LWIP202=y
# CONFIG_RT_USING_LWIP212 is not set
# CONFIG_RT_USING_LWIP_IPV6 is not set
CONFIG_RT_LWIP_MEM_ALIGNMENT=4
CONFIG_RT_LWIP_IGMP=y
CONFIG_RT_LWIP_ICMP=y
# CONFIG_RT_LWIP_SNMP is not set
CONFIG_RT_LWIP_DNS=y
CONFIG_RT_LWIP_DHCP=y
CONFIG_IP_SOF_BROADCAST=1
CONFIG_IP_SOF_BROADCAST_RECV=1
#
# Static IPv4 Address
#
CONFIG_RT_LWIP_IPADDR="192.168.1.30"
CONFIG_RT_LWIP_GWADDR="192.168.1.1"
CONFIG_RT_LWIP_MSKADDR="255.255.255.0"
CONFIG_RT_LWIP_UDP=y
CONFIG_RT_LWIP_TCP=y
CONFIG_RT_LWIP_RAW=y
# CONFIG_RT_LWIP_PPP is not set
CONFIG_RT_MEMP_NUM_NETCONN=8
CONFIG_RT_LWIP_PBUF_NUM=16
CONFIG_RT_LWIP_RAW_PCB_NUM=4
CONFIG_RT_LWIP_UDP_PCB_NUM=4
CONFIG_RT_LWIP_TCP_PCB_NUM=4
CONFIG_RT_LWIP_TCP_SEG_NUM=40
CONFIG_RT_LWIP_TCP_SND_BUF=8196
CONFIG_RT_LWIP_TCP_WND=8196
CONFIG_RT_LWIP_TCPTHREAD_PRIORITY=10
CONFIG_RT_LWIP_TCPTHREAD_MBOX_SIZE=8
CONFIG_RT_LWIP_TCPTHREAD_STACKSIZE=1024
# CONFIG_LWIP_NO_RX_THREAD is not set
# CONFIG_LWIP_NO_TX_THREAD is not set
CONFIG_RT_LWIP_ETHTHREAD_PRIORITY=12
CONFIG_RT_LWIP_ETHTHREAD_STACKSIZE=1024
CONFIG_RT_LWIP_ETHTHREAD_MBOX_SIZE=8
# CONFIG_RT_LWIP_REASSEMBLY_FRAG is not set
CONFIG_LWIP_NETIF_STATUS_CALLBACK=1
CONFIG_LWIP_NETIF_LINK_CALLBACK=1
CONFIG_SO_REUSE=1
CONFIG_LWIP_SO_RCVTIMEO=1
CONFIG_LWIP_SO_SNDTIMEO=1
CONFIG_LWIP_SO_RCVBUF=1
CONFIG_LWIP_SO_LINGER=0
# CONFIG_RT_LWIP_NETIF_LOOPBACK is not set
CONFIG_LWIP_NETIF_LOOPBACK=0
# CONFIG_RT_LWIP_STATS is not set
# CONFIG_RT_LWIP_USING_HW_CHECKSUM is not set
CONFIG_RT_LWIP_USING_PING=y
# CONFIG_RT_LWIP_DEBUG is not set
# #
# AT commands # AT commands
# #
# CONFIG_RT_USING_AT is not set # CONFIG_RT_USING_AT is not set
# CONFIG_LWIP_USING_DHCPD is not set
# #
# VBUS(Virtual Software BUS) # VBUS(Virtual Software BUS)
@ -423,14 +324,64 @@ CONFIG_BSP_USING_FMC=y
# More Drivers # More Drivers
# #
# CONFIG_PKG_USING_RW007 is not set # CONFIG_PKG_USING_RW007 is not set
# CONFIG_RW007_NOT_USE_EXAMPLE_DRIVERS is not set
# CONFIG_RW007_USING_STM32_DRIVERS is not set
# CONFIG_DRV_USING_OV2640 is not set # CONFIG_DRV_USING_OV2640 is not set
#
# APP_Framework
#
# #
# Applications # Applications
# #
#
# config stack size and priority of main task
#
CONFIG_MAIN_KTASK_STACK_SIZE=1024
#
# test app
#
# CONFIG_USER_TEST is not set
#
# connection app
#
#
# control app
#
# CONFIG_APPLICATION_CONTROL is not set
#
# knowing app
#
# CONFIG_APPLICATION_KNOWING is not set
#
# sensor app
#
# CONFIG_APPLICATION_SENSOR is not set
# #
# Framework # Framework
# #
CONFIG_TRANSFORM_LAYER_ATTRIUBUTE=y
CONFIG_ADD_XIUOS_FETURES=y
# CONFIG_ADD_NUTTX_FETURES is not set
# CONFIG_ADD_RTTHREAD_FETURES is not set
CONFIG_SUPPORT_SENSOR_FRAMEWORK=y
# CONFIG_SENSOR_CO2 is not set
# CONFIG_SENSOR_PM is not set
# CONFIG_SENSOR_VOICE is not set
# CONFIG_SENSOR_TEMPERATURE is not set
# CONFIG_SENSOR_HUMIDITY is not set
# CONFIG_SUPPORT_CONNECTION_FRAMEWORK is not set
CONFIG_SUPPORT_KNOWING_FRAMEWORK=y
# CONFIG_SUPPORT_CONTROL_FRAMEWORK is not set
#
# app lib
#
CONFIG_APP_SELECT_NEWLIB=y
# CONFIG_APP_SELECT_OTHER_LIB is not set

View File

@ -16,9 +16,14 @@ config RTT_DIR
string string
default "../../rt-thread" default "../../rt-thread"
config APP_DIR
string
default "../../../../APP_Framework"
source "$RTT_DIR/Kconfig" source "$RTT_DIR/Kconfig"
source "$RTT_DIR/bsp/stm32/libraries/Kconfig" source "$RTT_DIR/bsp/stm32/libraries/Kconfig"
source "board/Kconfig" source "board/Kconfig"
source "$RT_Thread_DIR/drivers/Kconfig" source "$RT_Thread_DIR/drivers/Kconfig"
source "$ROOT_DIR/APP_Framework/Applications/Kconfig" source "$ROOT_DIR/APP_Framework/Kconfig"
source "$ROOT_DIR/APP_Framework/Framework/Kconfig"

View File

@ -28,7 +28,6 @@
/* kservice optimization */ /* kservice optimization */
#define RT_DEBUG #define RT_DEBUG
#define RT_DEBUG_COLOR
/* Inter-Thread communication */ /* Inter-Thread communication */
@ -41,8 +40,7 @@
/* Memory Management */ /* Memory Management */
#define RT_USING_MEMPOOL #define RT_USING_MEMPOOL
#define RT_USING_MEMHEAP #define RT_USING_SMALL_MEM
#define RT_USING_MEMHEAP_AS_HEAP
#define RT_USING_HEAP #define RT_USING_HEAP
/* Kernel Device Object */ /* Kernel Device Object */
@ -50,7 +48,7 @@
#define RT_USING_DEVICE #define RT_USING_DEVICE
#define RT_USING_CONSOLE #define RT_USING_CONSOLE
#define RT_CONSOLEBUF_SIZE 128 #define RT_CONSOLEBUF_SIZE 128
#define RT_CONSOLE_DEVICE_NAME "uart1" #define RT_CONSOLE_DEVICE_NAME "uart"
#define RT_VER_NUM 0x40004 #define RT_VER_NUM 0x40004
#define ARCH_ARM #define ARCH_ARM
#define RT_USING_CPU_FFS #define RT_USING_CPU_FFS
@ -66,7 +64,6 @@
/* C++ features */ /* C++ features */
#define RT_USING_CPLUSPLUS
/* Command shell */ /* Command shell */
@ -81,15 +78,14 @@
#define FINSH_CMD_SIZE 80 #define FINSH_CMD_SIZE 80
#define FINSH_USING_MSH #define FINSH_USING_MSH
#define FINSH_USING_MSH_DEFAULT #define FINSH_USING_MSH_DEFAULT
#define FINSH_USING_MSH_ONLY
#define FINSH_ARG_MAX 10 #define FINSH_ARG_MAX 10
/* Device virtual file system */ /* Device virtual file system */
#define RT_USING_DFS #define RT_USING_DFS
#define DFS_USING_WORKDIR #define DFS_USING_WORKDIR
#define DFS_FILESYSTEMS_MAX 2 #define DFS_FILESYSTEMS_MAX 4
#define DFS_FILESYSTEM_TYPES_MAX 2 #define DFS_FILESYSTEM_TYPES_MAX 4
#define DFS_FD_MAX 16 #define DFS_FD_MAX 16
#define RT_USING_DFS_ELMFAT #define RT_USING_DFS_ELMFAT
@ -111,9 +107,6 @@
#define RT_USING_DEVICE_IPC #define RT_USING_DEVICE_IPC
#define RT_PIPE_BUFSZ 512 #define RT_PIPE_BUFSZ 512
#define RT_USING_SYSTEM_WORKQUEUE
#define RT_SYSTEM_WORKQUEUE_STACKSIZE 2048
#define RT_SYSTEM_WORKQUEUE_PRIORITY 23
#define RT_USING_SERIAL #define RT_USING_SERIAL
#define RT_SERIAL_USING_DMA #define RT_SERIAL_USING_DMA
#define RT_SERIAL_RB_BUFSZ 64 #define RT_SERIAL_RB_BUFSZ 64
@ -122,31 +115,6 @@
#define RT_USING_PIN #define RT_USING_PIN
#define RT_USING_SPI #define RT_USING_SPI
#define RT_USING_SPI_MSD #define RT_USING_SPI_MSD
#define RT_USING_WIFI
#define RT_WLAN_DEVICE_STA_NAME "wlan0"
#define RT_WLAN_DEVICE_AP_NAME "wlan1"
#define RT_WLAN_SSID_MAX_LENGTH 32
#define RT_WLAN_PASSWORD_MAX_LENGTH 32
#define RT_WLAN_DEV_EVENT_NUM 2
#define RT_WLAN_MANAGE_ENABLE
#define RT_WLAN_SCAN_WAIT_MS 10000
#define RT_WLAN_CONNECT_WAIT_MS 10000
#define RT_WLAN_SCAN_SORT
#define RT_WLAN_MSH_CMD_ENABLE
#define RT_WLAN_AUTO_CONNECT_ENABLE
#define AUTO_CONNECTION_PERIOD_MS 2000
#define RT_WLAN_CFG_ENABLE
#define RT_WLAN_CFG_INFO_MAX 3
#define RT_WLAN_PROT_ENABLE
#define RT_WLAN_PROT_NAME_LEN 8
#define RT_WLAN_PROT_MAX 2
#define RT_WLAN_DEFAULT_PROT "lwip"
#define RT_WLAN_PROT_LWIP_ENABLE
#define RT_WLAN_PROT_LWIP_NAME "lwip"
#define RT_WLAN_WORK_THREAD_ENABLE
#define RT_WLAN_WORKQUEUE_THREAD_NAME "wlan"
#define RT_WLAN_WORKQUEUE_THREAD_SIZE 2048
#define RT_WLAN_WORKQUEUE_THREAD_PRIO 15
/* Using USB */ /* Using USB */
@ -161,67 +129,12 @@
/* Socket abstraction layer */ /* Socket abstraction layer */
#define RT_USING_SAL
#define SAL_INTERNET_CHECK
/* protocol stack implement */
#define SAL_USING_LWIP
#define SAL_USING_POSIX
/* Network interface device */ /* Network interface device */
#define RT_USING_NETDEV
#define NETDEV_USING_IFCONFIG
#define NETDEV_USING_PING
#define NETDEV_USING_NETSTAT
#define NETDEV_USING_AUTO_DEFAULT
#define NETDEV_IPV4 1
#define NETDEV_IPV6 0
/* light weight TCP/IP stack */ /* light weight TCP/IP stack */
#define RT_USING_LWIP
#define RT_USING_LWIP202
#define RT_LWIP_MEM_ALIGNMENT 4
#define RT_LWIP_IGMP
#define RT_LWIP_ICMP
#define RT_LWIP_DNS
#define RT_LWIP_DHCP
#define IP_SOF_BROADCAST 1
#define IP_SOF_BROADCAST_RECV 1
/* Static IPv4 Address */
#define RT_LWIP_IPADDR "192.168.1.30"
#define RT_LWIP_GWADDR "192.168.1.1"
#define RT_LWIP_MSKADDR "255.255.255.0"
#define RT_LWIP_UDP
#define RT_LWIP_TCP
#define RT_LWIP_RAW
#define RT_MEMP_NUM_NETCONN 8
#define RT_LWIP_PBUF_NUM 16
#define RT_LWIP_RAW_PCB_NUM 4
#define RT_LWIP_UDP_PCB_NUM 4
#define RT_LWIP_TCP_PCB_NUM 4
#define RT_LWIP_TCP_SEG_NUM 40
#define RT_LWIP_TCP_SND_BUF 8196
#define RT_LWIP_TCP_WND 8196
#define RT_LWIP_TCPTHREAD_PRIORITY 10
#define RT_LWIP_TCPTHREAD_MBOX_SIZE 8
#define RT_LWIP_TCPTHREAD_STACKSIZE 1024
#define RT_LWIP_ETHTHREAD_PRIORITY 12
#define RT_LWIP_ETHTHREAD_STACKSIZE 1024
#define RT_LWIP_ETHTHREAD_MBOX_SIZE 8
#define LWIP_NETIF_STATUS_CALLBACK 1
#define LWIP_NETIF_LINK_CALLBACK 1
#define SO_REUSE 1
#define LWIP_SO_RCVTIMEO 1
#define LWIP_SO_SNDTIMEO 1
#define LWIP_SO_RCVBUF 1
#define LWIP_SO_LINGER 0
#define LWIP_NETIF_LOOPBACK 0
#define RT_LWIP_USING_PING
/* AT commands */ /* AT commands */
@ -270,9 +183,37 @@
/* More Drivers */ /* More Drivers */
/* APP_Framework */
/* Applications */ /* Applications */
/* config stack size and priority of main task */
#define MAIN_KTASK_STACK_SIZE 1024
/* test app */
/* connection app */
/* control app */
/* knowing app */
/* sensor app */
/* Framework */ /* Framework */
#define TRANSFORM_LAYER_ATTRIUBUTE
#define ADD_XIUOS_FETURES
#define SUPPORT_SENSOR_FRAMEWORK
#define SUPPORT_KNOWING_FRAMEWORK
/* app lib */
#define APP_SELECT_NEWLIB
#endif #endif

View File

@ -1,5 +1,5 @@
import os import os
SRC_APP_DIR = '../../../../APP_Framework'
# toolchains options # toolchains options
ARCH='arm' ARCH='arm'
CPU='cortex-m4' CPU='cortex-m4'