xiuos3/kernel/memory/byte_manage.c

1038 lines
33 KiB
C

/*
* Copyright (c) 2020 AIIT XUOS Lab
* XiUOS is licensed under Mulan PSL v2.
* You can use this software according to the terms and conditions of the Mulan PSL v2.
* You may obtain a copy of Mulan PSL v2 at:
* http://license.coscl.org.cn/MulanPSL2
* THIS SOFTWARE IS PROVIDED ON AN "AS IS" BASIS, WITHOUT WARRANTIES OF ANY KIND,
* EITHER EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO NON-INFRINGEMENT,
* MERCHANTABILITY OR FIT FOR A PARTICULAR PURPOSE.
* See the Mulan PSL v2 for more details.
*/
/**
* @file: byte_manage.c
* @brief: memory management file
* @version: 1.0
* @author: AIIT XUOS Lab
* @date: 2020/3/8
*
*/
#include <xiuos.h>
#include <string.h>
#define MEM_STATS
/* Covert pointer to other structure */
#define PTR2ALLOCNODE(pointer) (struct DynamicAllocNode *)(pointer)
#define PTR2FREENODE(pointer) (struct DynamicFreeNode *)(pointer)
/* Calculate the size of AllocNode and FreeNode */
#define SIZEOF_DYNAMICALLOCNODE_MEM (sizeof(struct DynamicAllocNode))
#define SIZEOF_PTR_MEM (sizeof(struct DynamicFreeNode *))
#define SIZEOF_XSFREENODE_MEM (SIZEOF_DYNAMICALLOCNODE_MEM + 2* SIZEOF_PTR_MEM)
/* Set the limits of buddy memory */
#define MEM_LOW_SHIFT (6)
#define MEM_HIGH_SHIFT (20)
#define MEM_LOW_RANGE (1 << MEM_LOW_SHIFT)
#define MEM_HIGH_RANGE (1 << MEM_HIGH_SHIFT)
#define MEM_LINKNRS (MEM_HIGH_SHIFT-MEM_LOW_SHIFT +1)
/* These masks are used to get the flags and data field of memory blocks */
#define STATIC_BLOCK_MASK 0x80000000
#define DYNAMIC_BLOCK_MASK 0x40000000
#define ALLOC_BLOCK_MASK 0xc0000000
#define DYNAMIC_REMAINING_MASK 0x3fffffff
#define SIZEOF_32B (32)
#define SIZEOF_64B (64)
#define SMALL_SIZE_32B(ITEMSIZE) ((ITEMSIZE + SIZEOF_DYNAMICALLOCNODE_MEM) * SMALL_NUMBER_32B) /* Calculate the total size for SIZEOF_32B blocks*/
#define SMALL_SIZE_64B(ITEMSIZE) ((ITEMSIZE + SIZEOF_DYNAMICALLOCNODE_MEM) * SMALL_NUMBER_64B) /* Calculate the total size for SIZEOF_64B blocks*/
/**
* The structure describes an allocated memory block from dynamic buddy memory.
*/
struct DynamicAllocNode
{
x_size_t size; /* the size of dynamicAllocNode */
uint32 prev_adj_size; /* the size of the previous adjacent node, (dynamic alloc node or dynamic free node */
};
/**
* The structure describes a released memory block in dynamic buddy memory.
*/
struct DynamicFreeNode
{
uint32 size; /* the size of dynamicAllocNode */
uint32 prev_adj_size; /* the size of the previous adjacent node, (dynamic alloc node or dynamic free node */
struct DynamicFreeNode *next;
struct DynamicFreeNode *prev;
};
/**
* The structure is the heart of Dynamic memory.
*/
struct DynamicBuddyMemory
{
x_ubase dynamic_buddy_start;
x_ubase dynamic_buddy_end;
x_ubase active_memory;
x_ubase max_ever_usedmem;
x_ubase static_memory;
uint64 mm_total_size; /* record the total size of dynamic buddy memory */
struct DynamicAllocNode *mm_dynamic_start[1]; /* record the start boundary of dynamic buddy memory */
struct DynamicAllocNode *mm_dynamic_end[1]; /* record the end boundary of dynamic buddy memory */
struct DynamicFreeNode mm_freenode_list[MEM_LINKNRS]; /* multiple lists */
struct DynamicBuddyMemoryDone *done;
};
/**
* The structure is for static memory mangement, such as SIZEOF_32B and SIZEOF_64B
*/
struct segment
{
x_size_t block_size; /* record the size of static memory block */
uint8 * freelist; /* list for all free static memory blocks */
int block_total_count; /* total static memory blocks */
int block_free_count; /* the remaining count of static memory blocks */
struct StaticMemoryDone *done;
};
/**
* The index of static memory blocks
*/
enum {
MM_SEGMENT_32B=0,
MM_SEGMENT_64B,
MM_SMALL_SEGMENTS
};
/**
* The structure is the operation of dynamic alloc node.
*/
struct DynamicAllocNodeDone
{
int (*JudgeStaticOrDynamic)(struct DynamicAllocNode *address);
int (*JudgeAllocated)(struct DynamicAllocNode *memory_ptr);
};
struct ByteMemory
{
struct DynamicBuddyMemory dynamic_buddy_manager; /* the manager of dynamic buddy memory */
struct segment static_manager[MM_SMALL_SEGMENTS]; /* the manager of static memory */
struct DynamicAllocNodeDone *done;
};
/**
* The structure is the operation of static memory.
*/
struct StaticMemoryDone
{
void (*init)(struct ByteMemory *byte_memory);
void* (*malloc)(struct ByteMemory *byte_memory, x_size_t size);
void (*release)(void *pointer);
};
/**
* The structure is the operation of dynamic memory.
*/
struct DynamicBuddyMemoryDone
{
void (*init)(struct DynamicBuddyMemory *dynamic_buddy, x_ubase dynamic_buddy_start,x_ubase dynamic_buddy_size);
void* (*malloc)(struct DynamicBuddyMemory *dynamic_buddy, x_size_t size);
void (*release)(struct ByteMemory *byte_memory, void *pointer);
int (*JudgeLegal)(struct DynamicBuddyMemory *dynamic_buddy, void *pointer);
};
static struct ByteMemory ByteManager;
#ifdef SEPARATE_COMPILE
static struct ByteMemory UserByteManager;
#endif
/**
* This function determines whether the address is valid.
*
* @param dynamic_buddy
* @param pointer the memory address
*
* @return valid return RET_TRUE; or invalid, return 0.
*/
static int JudgeValidAddressRange(struct DynamicBuddyMemory *dynamic_buddy, void *pointer)
{
NULL_PARAM_CHECK(dynamic_buddy);
NULL_PARAM_CHECK(pointer);
/* the given address is between the physical start address and physical end address */
if(((struct DynamicAllocNode *)pointer > dynamic_buddy->mm_dynamic_start[0]) && ((struct DynamicAllocNode *)pointer < dynamic_buddy->mm_dynamic_end[0])) {
return RET_TRUE;
}
/* invalid address */
return 0;
}
/**
* This function judges whether the memory address is in static or dynamic memory.
*
* @param address the given memory address
*
* @return the memory type, 1 on static memory area; 0 on dynamic memory area
*/
static int SmallMemTypeAlloc(struct DynamicAllocNode *address)
{
NULL_PARAM_CHECK(address);
if(address->prev_adj_size & STATIC_BLOCK_MASK) {
return RET_TRUE;
}
return 0;
}
/**
* This function judges whether the memory block is allocated.
*
* @param memory_ptr the memory block to be judged
*
* @return the result, 1 on allocated node; 0 on release node
*/
static int MmAllocNode(struct DynamicAllocNode *memory_ptr)
{
NULL_PARAM_CHECK(memory_ptr);
if(memory_ptr->prev_adj_size & ALLOC_BLOCK_MASK) {
return RET_TRUE;
}
return 0;
}
static struct DynamicAllocNodeDone NodeDone = {
SmallMemTypeAlloc,
MmAllocNode,
};
/**
* This function calculates the dynamic buddy mm_freenode_list according the give memory size.
*
* @param size the memory size
*
* @return the mm_freenode_list index
*/
static int CaculateBuddyIndex(x_size_t size)
{
int ndx = 0;
if (size < MEM_HIGH_RANGE) {
size >>= MEM_LOW_SHIFT;
for (; size > 1; ndx++, size /= 2);
} else {
ndx = MEM_LINKNRS - 1;
}
return ndx;
}
/**
* This function inserts freenode into dynamic buddy memory.
*
* @param dynamic_buddy the heart dynamic memory structure
* @param release_node the node to be released to dynamic_buddy
*/
static void AddNewNodeIntoBuddy(struct DynamicBuddyMemory *dynamic_buddy, struct DynamicFreeNode *release_node)
{
int ndx = 0;
struct DynamicFreeNode *nextFreeNode = NONE;
struct DynamicFreeNode *prevFreeNode = NONE;
NULL_PARAM_CHECK(dynamic_buddy);
NULL_PARAM_CHECK(release_node);
/* calculate the index value */
ndx = CaculateBuddyIndex(release_node->size);
/* find the most suitable location, which is sorted by size */
for (prevFreeNode = &dynamic_buddy->mm_freenode_list[ndx], nextFreeNode = dynamic_buddy->mm_freenode_list[ndx].next;
nextFreeNode && nextFreeNode->size && nextFreeNode->size < release_node->size;
prevFreeNode = nextFreeNode, nextFreeNode = nextFreeNode->next);
/* insert the release_node into the linklist */
prevFreeNode->next = release_node;
release_node->prev = prevFreeNode;
release_node->next = nextFreeNode;
if (nextFreeNode) {
nextFreeNode->prev = release_node;
}
}
/**
* This function initializes the structure of dynamic buddy memory.
*
* @param dynamic_buddy the heart buddy structure
* @param dynamic_buddy_start the physical start address of dynamic memory
* @param dynamic_buddy_size the size of dynamic memory
*/
static void InitBuddy(struct DynamicBuddyMemory *dynamic_buddy, x_ubase dynamic_buddy_start,x_ubase dynamic_buddy_size)
{
struct DynamicFreeNode *node = NONE;
NULL_PARAM_CHECK(dynamic_buddy);
/* record the dynamic memory size */
dynamic_buddy->mm_total_size += (uint64)dynamic_buddy_size;
/* record the start boundary of dynamic buddy memory */
dynamic_buddy->mm_dynamic_start[0] = PTR2ALLOCNODE(dynamic_buddy_start);
dynamic_buddy->mm_dynamic_start[0]->size = SIZEOF_DYNAMICALLOCNODE_MEM;
dynamic_buddy->mm_dynamic_start[0]->prev_adj_size = DYNAMIC_BLOCK_MASK;
/* the initialized free node */
node =(struct DynamicFreeNode *) ((x_ubase)dynamic_buddy_start + SIZEOF_DYNAMICALLOCNODE_MEM);
node->size=(uint32)(dynamic_buddy_size - 2* SIZEOF_DYNAMICALLOCNODE_MEM);
node->prev_adj_size= SIZEOF_DYNAMICALLOCNODE_MEM;
/* record the end boundary of dynamic buddy memory */
dynamic_buddy->mm_dynamic_end[0] = PTR2ALLOCNODE((x_ubase)dynamic_buddy_start + (x_ubase)dynamic_buddy_size - SIZEOF_DYNAMICALLOCNODE_MEM);
dynamic_buddy->mm_dynamic_end[0]->size = SIZEOF_DYNAMICALLOCNODE_MEM;
dynamic_buddy->mm_dynamic_end[0]->prev_adj_size = node->size;
dynamic_buddy->mm_dynamic_end[0]->prev_adj_size |= DYNAMIC_BLOCK_MASK;
/* insert node into dynamic buddy memory */
AddNewNodeIntoBuddy(dynamic_buddy,node);
}
/**
* This function allocates dynamic memory from dynamic buddy memory.
*
* @param dynamic_buddy the heart dynamic buddy structure
* @param size the memory size to be allocated
*
* @return pointer address on success; NULL on failure
*/
static void* BigMemMalloc(struct DynamicBuddyMemory *dynamic_buddy, x_size_t size)
{
int ndx = 0;
x_size_t allocsize = 0;
void *result = NONE;
struct DynamicFreeNode *node = NONE;
NULL_PARAM_CHECK(dynamic_buddy);
/* calculate the real size */
allocsize = size + SIZEOF_DYNAMICALLOCNODE_MEM;
/* if the size exceeds the upper limit, return MEM_LINKNRS - 1 */
if (allocsize >= MEM_HIGH_RANGE) {
ndx = MEM_LINKNRS - 1;
} else {
/* convert the request size into a linklist index */
ndx = CaculateBuddyIndex(allocsize);
}
/* best-fit method */
for (node = dynamic_buddy->mm_freenode_list[ndx].next;
node && (node->size < allocsize);
node = node->next) {
};
/* get the best-fit freeNode */
if (node) {
struct DynamicFreeNode *remainder;
struct DynamicFreeNode *next;
x_size_t remaining;
node->prev->next = node->next;
if (node->next) {
node->next->prev = node->prev;
}
remaining = node->size - allocsize;
if (remaining >= MEM_LOW_RANGE){
next = PTR2FREENODE(((char *)node) + node->size);
/* create the remainder node */
remainder = PTR2FREENODE(((char *)node) + allocsize);
remainder->size = remaining;
remainder->prev_adj_size = allocsize;
/* adjust the size of the node */
node->size = allocsize;
next->prev_adj_size = (remaining|(next->prev_adj_size & ALLOC_BLOCK_MASK));
/* insert the remainder freeNode back into the dynamic buddy memory */
AddNewNodeIntoBuddy(dynamic_buddy, remainder);
}
/* handle the case of an exact size match */
node->prev_adj_size &= DYNAMIC_REMAINING_MASK;
node->prev_adj_size |= DYNAMIC_BLOCK_MASK;
result = (void *)((char *)node + SIZEOF_DYNAMICALLOCNODE_MEM);
}
/* failure allocation */
if(result == NONE) {
KPrintf("%s: allocation failed, size %d.\n", __func__,allocsize);
return result;
}
#ifdef MEM_STATS
/* statistic memory usage */
dynamic_buddy->active_memory += node->size;
if(dynamic_buddy->active_memory > dynamic_buddy->max_ever_usedmem)
dynamic_buddy->max_ever_usedmem = dynamic_buddy->active_memory;
#endif
return result;
}
/**
* This function will release dynamic memory. It is called by x_free function.
*
* @param pointer
*/
static void BigMemFree( struct ByteMemory *byte_memory, void *pointer)
{
struct DynamicFreeNode *node = NONE;
struct DynamicFreeNode *prev = NONE;
struct DynamicFreeNode *next = NONE;
NULL_PARAM_CHECK(byte_memory);
NULL_PARAM_CHECK(pointer);
/* get the freeNode according the pointer address */
node = PTR2FREENODE((char*)pointer - SIZEOF_DYNAMICALLOCNODE_MEM);
#ifdef MEM_STATS
/* statistic memory information */
byte_memory->dynamic_buddy_manager.active_memory -= node->size;
#endif
/* get the next sibling freeNode */
next = PTR2FREENODE((char*)node+node->size);
if(((next->prev_adj_size & DYNAMIC_BLOCK_MASK) == 0)) {
struct DynamicAllocNode *andbeyond;
andbeyond = PTR2ALLOCNODE((char*)next + next->size);
next->prev->next = next->next;
if(next->next) {
next->next->prev = next->prev;
}
node->size += next->size;
andbeyond->prev_adj_size = (node->size | (andbeyond->prev_adj_size & ALLOC_BLOCK_MASK));
next = (struct DynamicFreeNode*)andbeyond;
}
/* get the prev sibling freeNode */
prev = (struct DynamicFreeNode*)((char*)node - (node->prev_adj_size & DYNAMIC_REMAINING_MASK));
if((prev->prev_adj_size & DYNAMIC_BLOCK_MASK)==0) {
prev->prev->next=prev->next;
if(prev->next){
prev->next->prev = prev->prev;
}
prev->size += node->size;
next->prev_adj_size = (prev->size | (next->prev_adj_size & ALLOC_BLOCK_MASK));
node = prev;
}
node->prev_adj_size &= DYNAMIC_REMAINING_MASK;
/* insert freeNode into dynamic buddy memory */
AddNewNodeIntoBuddy(&byte_memory->dynamic_buddy_manager,node);
}
static struct DynamicBuddyMemoryDone DynamicDone = {
InitBuddy,
BigMemMalloc,
BigMemFree,
JudgeValidAddressRange,
};
/**
* This function initializes the static segment struction.
*
* @param StaticSegment the StaticSegment to be initialized
*/
static void SmallMemInit(struct ByteMemory *byte_memory)
{
register x_size_t offset = 0;
struct segment *item = NONE;
struct DynamicAllocNode *node = NONE;
NULL_PARAM_CHECK(byte_memory);
item = &byte_memory->static_manager[MM_SEGMENT_32B];
/* allocate memory zone for [32b] */
item->freelist = byte_memory->dynamic_buddy_manager.done->malloc(&byte_memory->dynamic_buddy_manager, SMALL_SIZE_32B(SIZEOF_32B));
if(!item->freelist) {
KPrintf("%s: no memory for small memory[32B].\n",__func__);
item->block_free_count = 0;
return;
}
/* initialize the attributes of static_segment_32B */
item->block_size = SIZEOF_32B;
item->block_total_count = SMALL_NUMBER_32B;
item->block_free_count = SMALL_NUMBER_32B;
for(offset = 0; offset < item->block_total_count; offset++) {
node = PTR2ALLOCNODE((char*)item->freelist + offset * (SIZEOF_32B + SIZEOF_DYNAMICALLOCNODE_MEM));
node->size =(x_size_t) ((char*)item->freelist + (offset + 1) * (SIZEOF_32B + SIZEOF_DYNAMICALLOCNODE_MEM));
node->prev_adj_size = STATIC_BLOCK_MASK;
}
node->size = NONE;
item = &byte_memory->static_manager[MM_SEGMENT_64B];
/* allocate memory zone for [64B] */
item->freelist = byte_memory->dynamic_buddy_manager.done->malloc(&byte_memory->dynamic_buddy_manager, SMALL_SIZE_64B(SIZEOF_64B));
if(!item->freelist) {
KPrintf("%s: no memory for small memory[64B].\n",__func__);
return;
}
/* initialize the attributes of static_segment_64B */
item->block_size = SIZEOF_64B;
item->block_total_count = SMALL_NUMBER_64B;
item->block_free_count = SMALL_NUMBER_64B;
for(offset = 0; offset < item->block_total_count; offset++) {
node = PTR2ALLOCNODE((char*)item->freelist + offset * (SIZEOF_64B + SIZEOF_DYNAMICALLOCNODE_MEM));
node->size =(x_size_t) ((char*)item->freelist + (offset + 1) * (SIZEOF_64B + SIZEOF_DYNAMICALLOCNODE_MEM));
node->prev_adj_size = STATIC_BLOCK_MASK;
}
node->size = NONE;
#ifdef MEM_STATS
/* statistic static memory information */
byte_memory->dynamic_buddy_manager.static_memory = SMALL_SIZE_64B(SIZEOF_64B) + SMALL_SIZE_32B(SIZEOF_32B);
#endif
}
/**
*
* This function will release the static memory block to static segment.
*
* @param pointer the memory to be released
*/
static void SmallMemFree(void *pointer)
{
struct segment *StaticSegment = NONE;
struct DynamicAllocNode *node = NONE;
NULL_PARAM_CHECK(pointer);
/* get the allocNode */
node = PTR2ALLOCNODE((char*)pointer-SIZEOF_DYNAMICALLOCNODE_MEM);
StaticSegment = (struct segment*)(x_size_t)node->size;
/* update the statistic information of StaticSegment */
node->size = (x_size_t)StaticSegment->freelist;
StaticSegment->freelist = (uint8 *)node;
StaticSegment->block_free_count++;
/* parameter detection */
CHECK(StaticSegment->block_free_count <= StaticSegment->block_total_count);
}
/**
* This funcation allocates a static memory block from static segment.
*
* @param StaticSegment the heart static segment structure to allocate static memory
* @param size the size to be allocated
*
* @return pointer address on success; NULL on failure
*/
static void *SmallMemMalloc(struct ByteMemory *byte_memory, x_size_t size)
{
void *result = NONE;
struct DynamicAllocNode *node = NONE;
struct segment *StaticSegment = NONE;
NULL_PARAM_CHECK(byte_memory);
if (size == SIZEOF_32B)
StaticSegment = &byte_memory->static_manager[0];
else
StaticSegment = &byte_memory->static_manager[1];
/* current static segment has free static memory block */
if(StaticSegment->block_free_count>0) {
/* get the head static memory block */
result = StaticSegment->freelist;
node = PTR2ALLOCNODE(StaticSegment->freelist);
node->prev_adj_size = STATIC_BLOCK_MASK;
/* update the statistic information of static segment */
StaticSegment->freelist = (uint8 *)(long)(node->size);
StaticSegment->block_free_count--;
node->size = (long)StaticSegment;
}
if(result) {
/* return static memory block */
return (char*)result + SIZEOF_DYNAMICALLOCNODE_MEM;
}
/* the static memory block is exhausted, now turn to dynamic buddy memory for allocation. */
result = byte_memory->dynamic_buddy_manager.done->malloc(&byte_memory->dynamic_buddy_manager, size);
return result;
}
static struct StaticMemoryDone StaticDone = {
SmallMemInit,
SmallMemMalloc,
SmallMemFree,
};
/**
* This function is provided to allocate memory block.
*
* @param size the memory size to be allocated
*
* @return pointer on success; NULL on failure
*/
void *x_malloc(x_size_t size)
{
void *ret = NONE;
register x_base lock = 0;
/* parameter detection */
if((size == 0) || (size > ByteManager.dynamic_buddy_manager.dynamic_buddy_end - ByteManager.dynamic_buddy_manager.dynamic_buddy_start - ByteManager.dynamic_buddy_manager.active_memory))
return NONE;
/* hold lock before allocation */
lock = CriticalAreaLock();
/* alignment */
size = ALIGN_MEN_UP(size, MEM_ALIGN_SIZE);
/* determine allocation operation from static segments or dynamic buddy memory */
#ifdef KERNEL_SMALL_MEM_ALLOC
if(size <= SIZEOF_32B) {
ret = ByteManager.static_manager[0].done->malloc(&ByteManager,SIZEOF_32B);
} else if(size <= SIZEOF_64B) {
ret = ByteManager.static_manager[1].done->malloc(&ByteManager,SIZEOF_64B);
} else
#endif
{
ret = ByteManager.dynamic_buddy_manager.done->malloc(&ByteManager.dynamic_buddy_manager,size);
}
if(ret != NONE)
CHECK(ByteManager.dynamic_buddy_manager.done->JudgeLegal(&ByteManager.dynamic_buddy_manager, ret - SIZEOF_DYNAMICALLOCNODE_MEM));
/* release lock */
CriticalAreaUnLock(lock);
return ret;
}
/**
* This function is provided to re-allocate memory block.
*
* @param pointer the old memory pointer
* @param size the memory size to be re-allocated
*
* @return pointer on success; NULL on failure
*/
void *x_realloc(void *pointer, x_size_t size)
{
x_size_t newsize = 0;
x_size_t oldsize = 0;
void *newmem = NONE;
struct DynamicAllocNode *oldnode = NONE;
/* the given pointer is NULL */
if (pointer == NONE)
return x_malloc(size);
/* parameter detection */
if (size == 0) {
x_free(pointer);
return NONE;
}
CHECK(ByteManager.dynamic_buddy_manager.done->JudgeLegal(&ByteManager.dynamic_buddy_manager,pointer));
/* alignment and calculate the real size */
newsize = ALIGN_MEN_UP(size, MEM_ALIGN_SIZE);
newsize += SIZEOF_DYNAMICALLOCNODE_MEM;
oldnode= PTR2ALLOCNODE((char*)pointer - SIZEOF_DYNAMICALLOCNODE_MEM);
CHECK(ByteManager.done->JudgeAllocated(oldnode));
/* achieve the old memory size */
if(ByteManager.done->JudgeStaticOrDynamic(oldnode)) {
oldsize = ((struct segment*)(long)(oldnode->size))->block_size;
} else {
oldsize = oldnode->size - SIZEOF_DYNAMICALLOCNODE_MEM;
}
/* allocate new memory */
newmem = x_malloc(size);
if(newmem == NONE) {
return NONE;
}
/* copy the old memory and then release old memory pointer */
memcpy((char*)newmem, (char*) pointer,size > oldsize ? oldsize : size);
x_free(pointer);
return newmem;
}
/**
* This function will allocate memory blocks and then clear the memory.
*
* @param count the number of memory blocks
* @param size the size of a memory block
*
* @return pointer on success; NULL on failure
*/
void *x_calloc(x_size_t count, x_size_t size)
{
void *p = NONE;
/* parameter detection */
if(count * size > ByteManager.dynamic_buddy_manager.dynamic_buddy_end - ByteManager.dynamic_buddy_manager.dynamic_buddy_start - ByteManager.dynamic_buddy_manager.active_memory)
return NONE;
/* calls x_malloc to allocate count * size memory */
p = x_malloc(count * size);
/* zero the memory */
if (p)
memset((char*)p, 0, count * size);
return p;
}
/**
* This function is provided to release memory block.
*
* @param pointer the memory to be released
*/
void x_free(void *pointer)
{
x_base lock = 0;
struct DynamicAllocNode *node = NONE;
/* parameter detection */
if (pointer == NONE)
return ;
CHECK(ByteManager.dynamic_buddy_manager.done->JudgeLegal(&ByteManager.dynamic_buddy_manager,pointer));
/* hold lock before release */
lock = CriticalAreaLock();
node = PTR2ALLOCNODE((char*)pointer-SIZEOF_DYNAMICALLOCNODE_MEM);
CHECK(ByteManager.done->JudgeAllocated(node));
/* judge release the memory block ro StaticSegment or dynamic buddy memory */
#ifdef KERNEL_SMALL_MEM_ALLOC
if(node->prev_adj_size & STATIC_BLOCK_MASK) {
ByteManager.static_manager->done->release(pointer);
} else
#endif
{
ByteManager.dynamic_buddy_manager.done->release(&ByteManager,pointer);
}
/* release the lock */
CriticalAreaUnLock(lock);
}
/**
* This function initializes the static segments and dynamic buddy memory structures.
*
* @param start_phy_address the start physical address for static and dynamic memory
* @param end_phy_address the end physical address for static and dynamic memory
*/
void InitBoardMemory(void *start_phy_address, void *end_phy_address)
{
register x_size_t offset = 0;
NULL_PARAM_CHECK(start_phy_address);
NULL_PARAM_CHECK(end_phy_address);
KDEBUG_NOT_IN_INTERRUPT;
struct DynamicBuddyMemory *mheap = &ByteManager.dynamic_buddy_manager;
/* align begin and end addr to page */
ByteManager.dynamic_buddy_manager.dynamic_buddy_start = ALIGN_MEN_UP((x_ubase)start_phy_address, MM_PAGE_SIZE);
ByteManager.dynamic_buddy_manager.dynamic_buddy_end = ALIGN_MEN_DOWN((x_ubase)end_phy_address, MM_PAGE_SIZE);
KPrintf("%s: 0x%x-0x%x \n",__func__,ByteManager.dynamic_buddy_manager.dynamic_buddy_start,ByteManager.dynamic_buddy_manager.dynamic_buddy_end);
/* parameter detection */
if (ByteManager.dynamic_buddy_manager.dynamic_buddy_start >= ByteManager.dynamic_buddy_manager.dynamic_buddy_end) {
KPrintf("InitBoardMemory, wrong address[0x%x - 0x%x]\n",
(x_ubase)start_phy_address, (x_ubase)end_phy_address);
return;
}
mheap->mm_total_size = 0;
memset(mheap->mm_freenode_list, 0, SIZEOF_XSFREENODE_MEM * MEM_LINKNRS);
/* initialize the freeNodeList */
for (offset = 1; offset < MEM_LINKNRS; offset++) {
mheap->mm_freenode_list[offset - 1].next = &mheap->mm_freenode_list[offset];
mheap->mm_freenode_list[offset].prev = &mheap->mm_freenode_list[offset - 1];
}
ByteManager.dynamic_buddy_manager.done = &DynamicDone;
ByteManager.static_manager[MM_SEGMENT_32B].done = &StaticDone;
ByteManager.static_manager[MM_SEGMENT_64B].done = &StaticDone;
ByteManager.done = &NodeDone;
/* dynamic buddy memory initialization */
ByteManager.dynamic_buddy_manager.done->init(&ByteManager.dynamic_buddy_manager, ByteManager.dynamic_buddy_manager.dynamic_buddy_start, ByteManager.dynamic_buddy_manager.dynamic_buddy_end - ByteManager.dynamic_buddy_manager.dynamic_buddy_start);
/* dynamic static segments initialization */
#ifdef KERNEL_SMALL_MEM_ALLOC
ByteManager.static_manager->done->init(&ByteManager);
#endif
}
#ifdef SEPARATE_COMPILE
/**
* This function is provided to allocate user memory block.
*
* @param size the memory size to be allocated
*
* @return pointer on success; NULL on failure
*/
void *x_umalloc(x_size_t size)
{
void *ret = NONE;
register x_base lock = 0;
/* parameter detection */
if((size == 0) || (size > UserByteManager.dynamic_buddy_manager.dynamic_buddy_end - UserByteManager.dynamic_buddy_manager.dynamic_buddy_start - UserByteManager.dynamic_buddy_manager.active_memory))
return NONE;
/* hold lock before allocation */
lock = CriticalAreaLock();
/* alignment */
size = ALIGN_MEN_UP(size, MEM_ALIGN_SIZE);
ret = UserByteManager.dynamic_buddy_manager.done->malloc(&UserByteManager.dynamic_buddy_manager,size);
if(ret != NONE)
CHECK(UserByteManager.dynamic_buddy_manager.done->JudgeLegal(&UserByteManager.dynamic_buddy_manager, ret - SIZEOF_DYNAMICALLOCNODE_MEM));
/* release lock */
CriticalAreaUnLock(lock);
return ret;
}
/**
* This function is provided to re-allocate memory block.
*
* @param pointer the old memory pointer
* @param size the memory size to be re-allocated
*
* @return pointer on success; NULL on failure
*/
void *x_urealloc(void *pointer, x_size_t size)
{
x_size_t newsize = 0;
x_size_t oldsize = 0;
void *newmem = NONE;
struct DynamicAllocNode *oldnode = NONE;
/* the given pointer is NULL */
if (pointer == NONE)
return x_umalloc(size);
/* parameter detection */
if (size == 0) {
x_ufree(pointer);
return NONE;
}
CHECK(UserByteManager.dynamic_buddy_manager.done->JudgeLegal(&UserByteManager.dynamic_buddy_manager,pointer));
/* alignment and calculate the real size */
newsize = ALIGN_MEN_UP(size, MEM_ALIGN_SIZE);
newsize += SIZEOF_DYNAMICALLOCNODE_MEM;
oldnode= PTR2ALLOCNODE((char*)pointer - SIZEOF_DYNAMICALLOCNODE_MEM);
CHECK(UserByteManager.done->JudgeAllocated(oldnode));
/* achieve the old memory size */
if(UserByteManager.done->JudgeStaticOrDynamic(oldnode)) {
oldsize = ((struct segment*)(oldnode->size))->block_size;
} else {
oldsize = oldnode->size - SIZEOF_DYNAMICALLOCNODE_MEM;
}
/* allocate new memory */
newmem = x_umalloc(size);
if(newmem == NONE) {
return NONE;
}
/* copy the old memory and then release old memory pointer */
memcpy((char*)newmem, (char*) pointer,size > oldsize ? oldsize : size);
x_ufree(pointer);
return newmem;
}
/**
* This function will allocate memory blocks and then clear the memory.
*
* @param count the number of memory blocks
* @param size the size of a memory block
*
* @return pointer on success; NULL on failure
*/
void *x_ucalloc(x_size_t count, x_size_t size)
{
void *p = NONE;
/* parameter detection */
if(count * size > UserByteManager.dynamic_buddy_manager.dynamic_buddy_end - UserByteManager.dynamic_buddy_manager.dynamic_buddy_start - UserByteManager.dynamic_buddy_manager.active_memory)
return NONE;
/* calls x_malloc to allocate count * size memory */
p = x_umalloc(count * size);
/* zero the memory */
if (p)
memset((char*)p, 0, count * size);
return p;
}
/**
* This function is provided to release memory block.
*
* @param pointer the memory to be released
*/
void x_ufree(void *pointer)
{
x_base lock = 0;
struct DynamicAllocNode *node = NONE;
/* parameter detection */
if (pointer == NONE)
return ;
CHECK(UserByteManager.dynamic_buddy_manager.done->JudgeLegal(&UserByteManager.dynamic_buddy_manager,pointer));
/* hold lock before release */
lock = CriticalAreaLock();
node = PTR2ALLOCNODE((char*)pointer-SIZEOF_DYNAMICALLOCNODE_MEM);
CHECK(UserByteManager.done->JudgeAllocated(node));
UserByteManager.dynamic_buddy_manager.done->release(&UserByteManager,pointer);
/* release the lock */
CriticalAreaUnLock(lock);
}
/**
* This function initializes the static segments and dynamic buddy memory structures.
*
* @param start_phy_address the start physical address for static and dynamic memory
* @param end_phy_address the end physical address for static and dynamic memory
*/
void UserInitBoardMemory(void *start_phy_address, void *end_phy_address)
{
register x_size_t offset = 0;
NULL_PARAM_CHECK(start_phy_address);
NULL_PARAM_CHECK(end_phy_address);
KDEBUG_NOT_IN_INTERRUPT;
struct DynamicBuddyMemory *uheap = &UserByteManager.dynamic_buddy_manager;
/* align begin and end addr to page */
UserByteManager.dynamic_buddy_manager.dynamic_buddy_start = ALIGN_MEN_UP((x_ubase)start_phy_address, MM_PAGE_SIZE);
UserByteManager.dynamic_buddy_manager.dynamic_buddy_end = ALIGN_MEN_DOWN((x_ubase)end_phy_address, MM_PAGE_SIZE);
KPrintf("%s: 0x%x-0x%x \n",__func__,UserByteManager.dynamic_buddy_manager.dynamic_buddy_start,UserByteManager.dynamic_buddy_manager.dynamic_buddy_end);
/* parameter detection */
if (UserByteManager.dynamic_buddy_manager.dynamic_buddy_start >= UserByteManager.dynamic_buddy_manager.dynamic_buddy_end) {
KPrintf("InitBoardMemory, wrong address[0x%x - 0x%x]\n",
(x_ubase)start_phy_address, (x_ubase)end_phy_address);
return;
}
uheap->mm_total_size = 0;
memset(uheap->mm_freenode_list, 0, SIZEOF_XSFREENODE_MEM * MEM_LINKNRS);
/* initialize the freeNodeList */
for (offset = 1; offset < MEM_LINKNRS; offset++) {
uheap->mm_freenode_list[offset - 1].next = &uheap->mm_freenode_list[offset];
uheap->mm_freenode_list[offset].prev = &uheap->mm_freenode_list[offset - 1];
}
UserByteManager.dynamic_buddy_manager.done = &DynamicDone;
UserByteManager.done = &NodeDone;
/* dynamic buddy memory initialization */
UserByteManager.dynamic_buddy_manager.done->init(&UserByteManager.dynamic_buddy_manager, UserByteManager.dynamic_buddy_manager.dynamic_buddy_start, UserByteManager.dynamic_buddy_manager.dynamic_buddy_end - UserByteManager.dynamic_buddy_manager.dynamic_buddy_start);
}
#endif
#ifdef MEM_STATS
/**
* This function obtains the statistic information about memory
*
* @param total_memory the total memory
* @param used_memory the meory being used
* @param max_used_memory the max allocated memory
*/
void MemoryInfo(uint32 *total_memory, uint32 *used_memory, uint32 *max_used_memory)
{
if (NONE != total_memory)
*total_memory = ByteManager.dynamic_buddy_manager.dynamic_buddy_end - ByteManager.dynamic_buddy_manager.dynamic_buddy_start;
if (NONE != used_memory)
*used_memory = ByteManager.dynamic_buddy_manager.active_memory;
if (NONE != max_used_memory)
*max_used_memory = ByteManager.dynamic_buddy_manager.max_ever_usedmem;
}
#ifdef TOOL_SHELL
#include <shell.h>
void ListBuddy(void);
void ShowMemory(void);
/**
* This function will list the statistic information about memory.
*/
void ShowMemory(void)
{
KPrintf("total memory: %d\n", ByteManager.dynamic_buddy_manager.dynamic_buddy_end - ByteManager.dynamic_buddy_manager.dynamic_buddy_start);
KPrintf("used memory : %d\n", ByteManager.dynamic_buddy_manager.active_memory);
KPrintf("maximum allocated memory: %d\n", ByteManager.dynamic_buddy_manager.max_ever_usedmem);
KPrintf("total cache szie: %d, %d/%d[32B],%d/%d[64B]\n", ByteManager.dynamic_buddy_manager.static_memory,ByteManager.static_manager[0].block_free_count,SMALL_NUMBER_32B,ByteManager.static_manager[1].block_free_count,SMALL_NUMBER_64B);
ListBuddy();
}
SHELL_EXPORT_CMD(SHELL_CMD_PERMISSION(0)|SHELL_CMD_TYPE(SHELL_TYPE_CMD_FUNC)|SHELL_CMD_PARAM_NUM(0),
ShowMemory,ShowMemory,list memory usage information);
/**
* This function will list the freeNodeList information on dynamic buddy memory.
*/
void ListBuddy(void)
{
int lock = 0;
struct DynamicFreeNode *debug = NONE;
lock = CriticalAreaLock();
KPrintf("\n\033[41;1mlist memory information\033[0m\n", __func__);
for (debug = ByteManager.dynamic_buddy_manager.mm_freenode_list[0].next;
debug;debug = debug->next){
KPrintf("%s,current is %x,next is %x, size %u, flag %x\n",__func__, debug, debug->next,debug->size,debug->prev_adj_size & ALLOC_BLOCK_MASK);
};
KPrintf("\nlist memory information\n\n");
CriticalAreaUnLock(lock);
}
SHELL_EXPORT_CMD(SHELL_CMD_PERMISSION(0)|SHELL_CMD_TYPE(SHELL_TYPE_CMD_FUNC)|SHELL_CMD_PARAM_NUM(0),
ListBuddy,ListBuddy,list memory usage information);
#endif
#endif