xiuos5/board/aiit-riscv64-board/third_party_driver/spi/hardware_spi.c

1524 lines
51 KiB
C

/* Copyright 2018 Canaan Inc.
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
/**
* @file hardware_spi.c
* @brief add from Canaan k210 SDK
* https://canaan-creative.com/developer
* @version 1.0
* @author AIIT XUOS Lab
* @date 2021-04-25
*/
#include <bsp.h>
#include <fpioa.h>
#include <gpiohs.h>
#include <hardware_spi.h>
#include <platform.h>
#include <stddef.h>
#include <stdlib.h>
#include <string.h>
#include <sysctl.h>
#include <utils.h>
volatile spi_t *const spi[4] =
{
(volatile spi_t *)SPI0_BASE_ADDR,
(volatile spi_t *)SPI1_BASE_ADDR,
(volatile spi_t *)SPI_SLAVE_BASE_ADDR,
(volatile spi_t *)SPI3_BASE_ADDR
};
typedef struct _spi_dma_context
{
uint8_t *buffer;
size_t BufLen;
uint32_t *MallocBuffer;
spi_transfer_mode_t IntMode;
dmac_channel_number_t dmac_channel;
spi_device_num_t spi_num;
plic_instance_t spi_int_instance;
} spi_dma_context_t;
spi_dma_context_t spi_dma_context[4];
typedef struct _spi_instance_t
{
spi_device_num_t spi_num;
spi_transfer_mode_t TransferMode;
dmac_channel_number_t dmac_channel;
plic_instance_t spi_int_instance;
spinlock_t lock;
} spi_instance_t;
static spi_instance_t g_spi_instance[4];
static spi_slave_instance_t g_instance;
static spi_frame_format_t spi_get_frame_format(spi_device_num_t spi_num)
{
uint8_t frf_offset;
switch(spi_num)
{
case 0:
case 1:
frf_offset = 21;
break;
case 2:
configASSERT(!"Spi Bus 2 Not Support!");
break;
case 3:
default:
frf_offset = 22;
break;
}
volatile spi_t *spi_adapter = spi[spi_num];
return ((spi_adapter->ctrlr0 >> frf_offset) & 0x3);
}
static spi_transfer_width_t spi_get_frame_size(size_t data_bit_length)
{
if (data_bit_length < 8)
return SPI_TRANS_CHAR;
else if (data_bit_length < 16)
return SPI_TRANS_SHORT;
return SPI_TRANS_INT;
}
static int spi_dma_irq(void *ctx)
{
spi_instance_t *v_instance = (spi_instance_t *)ctx;
volatile spi_t *spi_handle = spi[v_instance->spi_num];
dmac_irq_unregister(v_instance->dmac_channel);
while ((spi_handle->sr & 0x05) != 0x04);
spi_handle->ser = 0x00;
spi_handle->ssienr = 0x00;
spinlock_unlock(&v_instance->lock);
if(v_instance->spi_int_instance.callback)
{
v_instance->spi_int_instance.callback(v_instance->spi_int_instance.ctx);
}
return 0;
}
static int spi_clk_init(uint8_t spi_num)
{
configASSERT(spi_num < SPI_DEVICE_MAX && spi_num != 2);
if(spi_num == 3)
sysctl_clock_set_clock_select(SYSCTL_CLOCK_SELECT_SPI3, 1);
sysctl_clock_enable(SYSCTL_CLOCK_SPI0 + spi_num);
sysctl_clock_set_threshold(SYSCTL_THRESHOLD_SPI0 + spi_num, 0);
return 0;
}
static void spi_set_tmod(uint8_t spi_num, uint32_t tmod)
{
configASSERT(spi_num < SPI_DEVICE_MAX);
volatile spi_t *spi_handle = spi[spi_num];
uint8_t tmod_offset = 0;
switch(spi_num)
{
case 0:
case 1:
case 2:
tmod_offset = 8;
break;
case 3:
default:
tmod_offset = 10;
break;
}
set_bit(&spi_handle->ctrlr0, 3 << tmod_offset, tmod << tmod_offset);
}
void spi_init(spi_device_num_t spi_num, spi_work_mode_t work_mode, spi_frame_format_t frame_format,
size_t data_bit_length, uint32_t endian)
{
configASSERT(data_bit_length >= 4 && data_bit_length <= 32);
configASSERT(spi_num < SPI_DEVICE_MAX && spi_num != 2);
spi_clk_init(spi_num);
uint8_t dfs_offset, frf_offset, work_mode_offset;
switch(spi_num)
{
case 0:
case 1:
dfs_offset = 16;
frf_offset = 21;
work_mode_offset = 6;
break;
case 2:
configASSERT(!"Spi Bus 2 Not Support!");
break;
case 3:
default:
dfs_offset = 0;
frf_offset = 22;
work_mode_offset = 8;
break;
}
switch (frame_format)
{
case SPI_FF_DUAL:
configASSERT(data_bit_length % 2 == 0);
break;
case SPI_FF_QUAD:
configASSERT(data_bit_length % 4 == 0);
break;
case SPI_FF_OCTAL:
configASSERT(data_bit_length % 8 == 0);
break;
default:
break;
}
volatile spi_t *spi_adapter = spi[spi_num];
if(spi_adapter->baudr == 0)
spi_adapter->baudr = 0x14;
spi_adapter->imr = 0x00;
spi_adapter->dmacr = 0x00;
spi_adapter->dmatdlr = 0x10;
spi_adapter->dmardlr = 0x00;
spi_adapter->ser = 0x00;
spi_adapter->ssienr = 0x00;
spi_adapter->ctrlr0 = (work_mode << work_mode_offset) | (frame_format << frf_offset) | ((data_bit_length - 1) << dfs_offset);
spi_adapter->spi_ctrlr0 = 0;
spi_adapter->endian = endian;
}
void spi_init_non_standard(spi_device_num_t spi_num, uint32_t instruction_length, uint32_t address_length,
uint32_t wait_cycles, spi_instruction_address_trans_mode_t instruction_address_trans_mode)
{
configASSERT(wait_cycles < (1 << 5));
configASSERT(instruction_address_trans_mode < 3);
configASSERT(spi_num < SPI_DEVICE_MAX && spi_num != 2);
volatile spi_t *spi_handle = spi[spi_num];
uint32_t inst_l = 0;
switch (instruction_length)
{
case 0:
inst_l = 0;
break;
case 4:
inst_l = 1;
break;
case 8:
inst_l = 2;
break;
case 16:
inst_l = 3;
break;
default:
configASSERT(!"Invalid instruction length");
break;
}
configASSERT(address_length % 4 == 0 && address_length <= 60);
uint32_t addr_l = address_length / 4;
spi_handle->spi_ctrlr0 = (wait_cycles << 11) | (inst_l << 8) | (addr_l << 2) | instruction_address_trans_mode;
}
uint32_t spi_set_clk_rate(spi_device_num_t spi_num, uint32_t spi_clk)
{
uint32_t spi_baudr = SysctlClockGetFreq(SYSCTL_CLOCK_SPI0 + spi_num) / spi_clk;
if(spi_baudr < 2 )
{
spi_baudr = 2;
}
else if(spi_baudr > 65534)
{
spi_baudr = 65534;
}
volatile spi_t *spi_adapter = spi[spi_num];
spi_adapter->baudr = spi_baudr;
return SysctlClockGetFreq(SYSCTL_CLOCK_SPI0 + spi_num) / spi_baudr;
}
void spi_send_data_normal(spi_device_num_t spi_num, spi_chip_select_t chip_select, const uint8_t *tx_buff, size_t tx_len)
{
configASSERT(spi_num < SPI_DEVICE_MAX && spi_num != 2);
size_t index, fifo_len;
spi_set_tmod(spi_num, SPI_TMOD_TRANS);
volatile spi_t *spi_handle = spi[spi_num];
uint8_t dfs_offset;
switch(spi_num)
{
case 0:
case 1:
dfs_offset = 16;
break;
case 2:
configASSERT(!"Spi Bus 2 Not Support!");
break;
case 3:
default:
dfs_offset = 0;
break;
}
uint32_t data_bit_length = (spi_handle->ctrlr0 >> dfs_offset) & 0x1F;
spi_transfer_width_t frame_width = spi_get_frame_size(data_bit_length);
uint8_t v_misalign_flag = 0;
uint32_t v_send_data;
if((uintptr_t)tx_buff % frame_width)
v_misalign_flag = 1;
spi_handle->ssienr = 0x01;
spi_handle->ser = 1U << chip_select;
uint32_t i = 0;
while (tx_len)
{
fifo_len = 32 - spi_handle->txflr;
fifo_len = fifo_len < tx_len ? fifo_len : tx_len;
switch(frame_width)
{
case SPI_TRANS_INT:
fifo_len = fifo_len / 4 * 4;
if(v_misalign_flag)
{
for(index = 0; index < fifo_len; index +=4)
{
memcpy(&v_send_data, tx_buff + i , 4);
spi_handle->dr[0] = v_send_data;
i += 4;
}
}
else
{
for (index = 0; index < fifo_len / 4; index++)
spi_handle->dr[0] = ((uint32_t *)tx_buff)[i++];
}
break;
case SPI_TRANS_SHORT:
fifo_len = fifo_len / 2 * 2;
if(v_misalign_flag)
{
for(index = 0; index < fifo_len; index +=2)
{
memcpy(&v_send_data, tx_buff + i, 2);
spi_handle->dr[0] = v_send_data;
i += 2;
}
}
else
{
for (index = 0; index < fifo_len / 2; index++)
spi_handle->dr[0] = ((uint16_t *)tx_buff)[i++];
}
break;
default:
for (index = 0; index < fifo_len; index++)
spi_handle->dr[0] = tx_buff[i++];
break;
}
tx_len -= fifo_len;
}
while ((spi_handle->sr & 0x05) != 0x04)
;
spi_handle->ser = 0x00;
spi_handle->ssienr = 0x00;
}
void spi_send_data_standard(spi_device_num_t spi_num, spi_chip_select_t chip_select, const uint8_t *CmdBuff,
size_t CmdLen, const uint8_t *tx_buff, size_t tx_len)
{
configASSERT(spi_num < SPI_DEVICE_MAX && spi_num != 2);
uint8_t *v_buf = malloc(CmdLen + tx_len);
size_t i;
for(i = 0; i < CmdLen; i++)
v_buf[i] = CmdBuff[i];
for(i = 0; i < tx_len; i++)
v_buf[CmdLen + i] = tx_buff[i];
spi_send_data_normal(spi_num, chip_select, v_buf, CmdLen + tx_len);
free((void *)v_buf);
}
void spi_send_data_standard_dma(dmac_channel_number_t channel_num, spi_device_num_t spi_num,
spi_chip_select_t chip_select,
const uint8_t *CmdBuff, size_t CmdLen, const uint8_t *tx_buff, size_t tx_len)
{
configASSERT(spi_num < SPI_DEVICE_MAX && spi_num != 2);
volatile spi_t *spi_handle = spi[spi_num];
uint8_t dfs_offset;
switch(spi_num)
{
case 0:
case 1:
dfs_offset = 16;
break;
case 2:
configASSERT(!"Spi Bus 2 Not Support!");
break;
case 3:
default:
dfs_offset = 0;
break;
}
uint32_t data_bit_length = (spi_handle->ctrlr0 >> dfs_offset) & 0x1F;
spi_transfer_width_t frame_width = spi_get_frame_size(data_bit_length);
uint32_t *buf;
size_t v_send_len;
int i;
switch(frame_width)
{
case SPI_TRANS_INT:
buf = malloc(CmdLen + tx_len);
for(i = 0; i < CmdLen / 4; i++)
buf[i] = ((uint32_t *)CmdBuff)[i];
for(i = 0; i < tx_len / 4; i++)
buf[CmdLen / 4 + i] = ((uint32_t *)tx_buff)[i];
v_send_len = (CmdLen + tx_len) / 4;
break;
case SPI_TRANS_SHORT:
buf = malloc((CmdLen + tx_len) / 2 * sizeof(uint32_t));
for(i = 0; i < CmdLen / 2; i++)
buf[i] = ((uint16_t *)CmdBuff)[i];
for(i = 0; i < tx_len / 2; i++)
buf[CmdLen / 2 + i] = ((uint16_t *)tx_buff)[i];
v_send_len = (CmdLen + tx_len) / 2;
break;
default:
buf = malloc((CmdLen + tx_len) * sizeof(uint32_t));
for(i = 0; i < CmdLen; i++)
buf[i] = CmdBuff[i];
for(i = 0; i < tx_len; i++)
buf[CmdLen + i] = tx_buff[i];
v_send_len = CmdLen + tx_len;
break;
}
spi_send_data_normal_dma(channel_num, spi_num, chip_select, buf, v_send_len, SPI_TRANS_INT);
free((void *)buf);
}
void spi_send_data_normal_dma(dmac_channel_number_t channel_num, spi_device_num_t spi_num,
spi_chip_select_t chip_select,
const void *tx_buff, size_t tx_len, spi_transfer_width_t spi_transfer_width)
{
configASSERT(spi_num < SPI_DEVICE_MAX && spi_num != 2);
spi_set_tmod(spi_num, SPI_TMOD_TRANS);
volatile spi_t *spi_handle = spi[spi_num];
uint32_t *buf;
int i;
switch(spi_transfer_width)
{
case SPI_TRANS_SHORT:
buf = malloc((tx_len) * sizeof(uint32_t));
for(i = 0; i < tx_len; i++)
buf[i] = ((uint16_t *)tx_buff)[i];
break;
case SPI_TRANS_INT:
buf = (uint32_t *)tx_buff;
break;
case SPI_TRANS_CHAR:
default:
buf = malloc((tx_len) * sizeof(uint32_t));
for(i = 0; i < tx_len; i++)
buf[i] = ((uint8_t *)tx_buff)[i];
break;
}
spi_handle->dmacr = 0x2; /*enable dma transmit*/
spi_handle->ssienr = 0x01;
sysctl_dma_select((sysctl_dma_channel_t) channel_num, SYSCTL_DMA_SELECT_SSI0_TX_REQ + spi_num * 2);
dmac_set_single_mode(channel_num, buf, (void *)(&spi_handle->dr[0]), DMAC_ADDR_INCREMENT, DMAC_ADDR_NOCHANGE,
DMAC_MSIZE_4, DMAC_TRANS_WIDTH_32, tx_len);
spi_handle->ser = 1U << chip_select;
dmac_wait_done(channel_num);
if(spi_transfer_width != SPI_TRANS_INT)
free((void *)buf);
while ((spi_handle->sr & 0x05) != 0x04)
;
spi_handle->ser = 0x00;
spi_handle->ssienr = 0x00;
}
void spi_dup_send_receive_data_dma(dmac_channel_number_t dma_send_channel_num,
dmac_channel_number_t dma_receive_channel_num,
spi_device_num_t spi_num, spi_chip_select_t chip_select,
const uint8_t *tx_buf, size_t tx_len, uint8_t *rx_buf, size_t rx_len)
{
spi_set_tmod(spi_num, SPI_TMOD_TRANS_RECV);
volatile spi_t *spi_handle = spi[spi_num];
uint8_t dfs_offset;
switch(spi_num)
{
case 0:
case 1:
dfs_offset = 16;
break;
case 2:
configASSERT(!"Spi Bus 2 Not Support!");
break;
case 3:
default:
dfs_offset = 0;
break;
}
uint32_t data_bit_length = (spi_handle->ctrlr0 >> dfs_offset) & 0x1F;
spi_transfer_width_t frame_width = spi_get_frame_size(data_bit_length);
size_t v_tx_len = tx_len / frame_width;
size_t v_rx_len = rx_len / frame_width;
size_t v_max_len = v_tx_len > v_rx_len ? v_tx_len : v_rx_len;
uint32_t *v_tx_buf = malloc(v_max_len * 4);
uint32_t *v_rx_buf = malloc(v_max_len * 4);
uint32_t i = 0;
switch(frame_width)
{
case SPI_TRANS_INT:
for(i = 0; i < v_tx_len; i++)
{
v_tx_buf[i] = ((uint32_t *)tx_buf)[i];
}
if(v_max_len > v_tx_len)
{
while(i < v_max_len)
{
v_tx_buf[i++] = 0xFFFFFFFF;
}
}
break;
case SPI_TRANS_SHORT:
for(i = 0; i < v_tx_len; i++)
{
v_tx_buf[i] = ((uint16_t *)tx_buf)[i];
}
if(v_max_len > v_tx_len)
{
while(i < v_max_len)
{
v_tx_buf[i++] = 0xFFFFFFFF;
}
}
break;
default:
for(i = 0; i < v_tx_len; i++)
{
v_tx_buf[i] = tx_buf[i];
}
if(v_max_len > v_tx_len)
{
while(i < v_max_len)
{
v_tx_buf[i++] = 0xFFFFFFFF;
}
}
break;
}
spi_handle->dmacr = 0x3;
spi_handle->ssienr = 0x01;
sysctl_dma_select((sysctl_dma_channel_t)dma_send_channel_num, SYSCTL_DMA_SELECT_SSI0_TX_REQ + spi_num * 2);
sysctl_dma_select((sysctl_dma_channel_t)dma_receive_channel_num, SYSCTL_DMA_SELECT_SSI0_RX_REQ + spi_num * 2);
dmac_set_single_mode(dma_receive_channel_num, (void *)(&spi_handle->dr[0]), v_rx_buf, DMAC_ADDR_NOCHANGE, DMAC_ADDR_INCREMENT,
DMAC_MSIZE_1, DMAC_TRANS_WIDTH_32, v_max_len);
dmac_set_single_mode(dma_send_channel_num, v_tx_buf, (void *)(&spi_handle->dr[0]), DMAC_ADDR_INCREMENT, DMAC_ADDR_NOCHANGE,
DMAC_MSIZE_4, DMAC_TRANS_WIDTH_32, v_max_len);
spi_handle->ser = 1U << chip_select;
dmac_wait_done(dma_send_channel_num);
dmac_wait_done(dma_receive_channel_num);
spi_handle->ser = 0x00;
spi_handle->ssienr = 0x00;
switch(frame_width)
{
case SPI_TRANS_INT:
for(i = 0; i < v_rx_len; i++)
((uint32_t *)rx_buf)[i] = v_rx_buf[i];
break;
case SPI_TRANS_SHORT:
for(i = 0; i < v_rx_len; i++)
((uint16_t *)rx_buf)[i] = v_rx_buf[i];
break;
default:
for(i = 0; i < v_rx_len; i++)
rx_buf[i] = v_rx_buf[i];
break;
}
free(v_tx_buf);
free(v_rx_buf);
}
void spi_receive_data_standard(spi_device_num_t spi_num, spi_chip_select_t chip_select, const uint8_t *CmdBuff,
size_t CmdLen, uint8_t *rx_buff, size_t rx_len)
{
configASSERT(spi_num < SPI_DEVICE_MAX && spi_num != 2);
size_t index, fifo_len;
if(CmdLen == 0)
spi_set_tmod(spi_num, SPI_TMOD_RECV);
else
spi_set_tmod(spi_num, SPI_TMOD_EEROM);
volatile spi_t *spi_handle = spi[spi_num];
uint8_t dfs_offset;
switch(spi_num)
{
case 0:
case 1:
dfs_offset = 16;
break;
case 2:
configASSERT(!"Spi Bus 2 Not Support!");
break;
case 3:
default:
dfs_offset = 0;
break;
}
uint32_t data_bit_length = (spi_handle->ctrlr0 >> dfs_offset) & 0x1F;
spi_transfer_width_t frame_width = spi_get_frame_size(data_bit_length);
uint32_t i = 0;
size_t v_cmd_len = CmdLen / frame_width;
uint32_t v_rx_len = rx_len / frame_width;
spi_handle->ctrlr1 = (uint32_t)(v_rx_len - 1);
spi_handle->ssienr = 0x01;
while (v_cmd_len)
{
fifo_len = 32 - spi_handle->txflr;
fifo_len = fifo_len < v_cmd_len ? fifo_len : v_cmd_len;
switch(frame_width)
{
case SPI_TRANS_INT:
for (index = 0; index < fifo_len; index++)
spi_handle->dr[0] = ((uint32_t *)CmdBuff)[i++];
break;
case SPI_TRANS_SHORT:
for (index = 0; index < fifo_len; index++)
spi_handle->dr[0] = ((uint16_t *)CmdBuff)[i++];
break;
default:
for (index = 0; index < fifo_len; index++)
spi_handle->dr[0] = CmdBuff[i++];
break;
}
spi_handle->ser = 1U << chip_select;
v_cmd_len -= fifo_len;
}
if(CmdLen == 0)
{
spi_handle->dr[0] = 0xffffffff;
spi_handle->ser = 1U << chip_select;
}
i = 0;
while (v_rx_len)
{
fifo_len = spi_handle->rxflr;
fifo_len = fifo_len < v_rx_len ? fifo_len : v_rx_len;
switch(frame_width)
{
case SPI_TRANS_INT:
for (index = 0; index < fifo_len; index++)
((uint32_t *)rx_buff)[i++] = spi_handle->dr[0];
break;
case SPI_TRANS_SHORT:
for (index = 0; index < fifo_len; index++)
((uint16_t *)rx_buff)[i++] = (uint16_t)spi_handle->dr[0];
break;
default:
for (index = 0; index < fifo_len; index++)
rx_buff[i++] = (uint8_t)spi_handle->dr[0];
break;
}
v_rx_len -= fifo_len;
}
spi_handle->ser = 0x00;
spi_handle->ssienr = 0x00;
}
void spi_receive_data_normal_dma(dmac_channel_number_t dma_send_channel_num,
dmac_channel_number_t dma_receive_channel_num,
spi_device_num_t spi_num, spi_chip_select_t chip_select, const void *CmdBuff,
size_t CmdLen, void *rx_buff, size_t rx_len)
{
configASSERT(spi_num < SPI_DEVICE_MAX && spi_num != 2);
if(CmdLen == 0)
spi_set_tmod(spi_num, SPI_TMOD_RECV);
else
spi_set_tmod(spi_num, SPI_TMOD_EEROM);
volatile spi_t *spi_handle = spi[spi_num];
spi_handle->ctrlr1 = (uint32_t)(rx_len - 1);
spi_handle->dmacr = 0x3;
spi_handle->ssienr = 0x01;
if(CmdLen)
sysctl_dma_select((sysctl_dma_channel_t)dma_send_channel_num, SYSCTL_DMA_SELECT_SSI0_TX_REQ + spi_num * 2);
sysctl_dma_select((sysctl_dma_channel_t)dma_receive_channel_num, SYSCTL_DMA_SELECT_SSI0_RX_REQ + spi_num * 2);
dmac_set_single_mode(dma_receive_channel_num, (void *)(&spi_handle->dr[0]), rx_buff, DMAC_ADDR_NOCHANGE, DMAC_ADDR_INCREMENT,
DMAC_MSIZE_1, DMAC_TRANS_WIDTH_32, rx_len);
if(CmdLen)
dmac_set_single_mode(dma_send_channel_num, CmdBuff, (void *)(&spi_handle->dr[0]), DMAC_ADDR_INCREMENT, DMAC_ADDR_NOCHANGE,
DMAC_MSIZE_4, DMAC_TRANS_WIDTH_32, CmdLen);
if(CmdLen == 0 && spi_get_frame_format(spi_num) == SPI_FF_STANDARD)
spi[spi_num]->dr[0] = 0xffffffff;
spi_handle->ser = 1U << chip_select;
if(CmdLen)
dmac_wait_done(dma_send_channel_num);
dmac_wait_done(dma_receive_channel_num);
spi_handle->ser = 0x00;
spi_handle->ssienr = 0x00;
}
void spi_receive_data_standard_dma(dmac_channel_number_t dma_send_channel_num,
dmac_channel_number_t dma_receive_channel_num,
spi_device_num_t spi_num, spi_chip_select_t chip_select, const uint8_t *CmdBuff,
size_t CmdLen, uint8_t *rx_buff, size_t rx_len)
{
configASSERT(spi_num < SPI_DEVICE_MAX && spi_num != 2);
volatile spi_t *spi_handle = spi[spi_num];
uint8_t dfs_offset;
switch(spi_num)
{
case 0:
case 1:
dfs_offset = 16;
break;
case 2:
configASSERT(!"Spi Bus 2 Not Support!");
break;
case 3:
default:
dfs_offset = 0;
break;
}
uint32_t data_bit_length = (spi_handle->ctrlr0 >> dfs_offset) & 0x1F;
spi_transfer_width_t frame_width = spi_get_frame_size(data_bit_length);
size_t i;
uint32_t *write_cmd;
uint32_t *ReadBuf;
size_t v_recv_len;
size_t v_cmd_len;
switch(frame_width)
{
case SPI_TRANS_INT:
write_cmd = malloc(CmdLen + rx_len);
for(i = 0; i < CmdLen / 4; i++)
write_cmd[i] = ((uint32_t *)CmdBuff)[i];
ReadBuf = &write_cmd[i];
v_recv_len = rx_len / 4;
v_cmd_len = CmdLen / 4;
break;
case SPI_TRANS_SHORT:
write_cmd = malloc((CmdLen + rx_len) /2 * sizeof(uint32_t));
for(i = 0; i < CmdLen / 2; i++)
write_cmd[i] = ((uint16_t *)CmdBuff)[i];
ReadBuf = &write_cmd[i];
v_recv_len = rx_len / 2;
v_cmd_len = CmdLen / 2;
break;
default:
write_cmd = malloc((CmdLen + rx_len) * sizeof(uint32_t));
for(i = 0; i < CmdLen; i++)
write_cmd[i] = CmdBuff[i];
ReadBuf = &write_cmd[i];
v_recv_len = rx_len;
v_cmd_len = CmdLen;
break;
}
spi_receive_data_normal_dma(dma_send_channel_num, dma_receive_channel_num, spi_num, chip_select, write_cmd, v_cmd_len, ReadBuf, v_recv_len);
switch(frame_width)
{
case SPI_TRANS_INT:
for(i = 0; i < v_recv_len; i++)
((uint32_t *)rx_buff)[i] = ReadBuf[i];
break;
case SPI_TRANS_SHORT:
for(i = 0; i < v_recv_len; i++)
((uint16_t *)rx_buff)[i] = ReadBuf[i];
break;
default:
for(i = 0; i < v_recv_len; i++)
rx_buff[i] = ReadBuf[i];
break;
}
free(write_cmd);
}
void spi_receive_data_multiple(spi_device_num_t spi_num, spi_chip_select_t chip_select, const uint32_t *CmdBuff,
size_t CmdLen, uint8_t *rx_buff, size_t rx_len)
{
configASSERT(spi_num < SPI_DEVICE_MAX && spi_num != 2);
size_t index, fifo_len;
if(CmdLen == 0)
spi_set_tmod(spi_num, SPI_TMOD_RECV);
else
spi_set_tmod(spi_num, SPI_TMOD_EEROM);
volatile spi_t *spi_handle = spi[spi_num];
uint8_t dfs_offset;
switch(spi_num)
{
case 0:
case 1:
dfs_offset = 16;
break;
case 2:
configASSERT(!"Spi Bus 2 Not Support!");
break;
case 3:
default:
dfs_offset = 0;
break;
}
uint32_t data_bit_length = (spi_handle->ctrlr0 >> dfs_offset) & 0x1F;
spi_transfer_width_t frame_width = spi_get_frame_size(data_bit_length);
uint32_t v_cmd_len = CmdLen;
uint32_t i = 0;
uint32_t v_rx_len = rx_len / frame_width;
spi_handle->ctrlr1 = (uint32_t)(v_rx_len - 1);
spi_handle->ssienr = 0x01;
while (v_cmd_len)
{
fifo_len = 32 - spi_handle->txflr;
fifo_len = fifo_len < v_cmd_len ? fifo_len : v_cmd_len;
for (index = 0; index < fifo_len; index++)
spi_handle->dr[0] = *CmdBuff++;
spi_handle->ser = 1U << chip_select;
v_cmd_len -= fifo_len;
}
if(CmdLen == 0)
{
spi_handle->ser = 1U << chip_select;
}
while (v_rx_len)
{
fifo_len = spi_handle->rxflr;
fifo_len = fifo_len < v_rx_len ? fifo_len : v_rx_len;
switch(frame_width)
{
case SPI_TRANS_INT:
for (index = 0; index < fifo_len; index++)
((uint32_t *)rx_buff)[i++] = spi_handle->dr[0];
break;
case SPI_TRANS_SHORT:
for (index = 0; index < fifo_len; index++)
((uint16_t *)rx_buff)[i++] = (uint16_t)spi_handle->dr[0];
break;
default:
for (index = 0; index < fifo_len; index++)
rx_buff[i++] = (uint8_t)spi_handle->dr[0];
break;
}
v_rx_len -= fifo_len;
}
spi_handle->ser = 0x00;
spi_handle->ssienr = 0x00;
}
void spi_receive_data_multiple_dma(dmac_channel_number_t dma_send_channel_num,
dmac_channel_number_t dma_receive_channel_num,
spi_device_num_t spi_num, spi_chip_select_t chip_select, const uint32_t *CmdBuff,
size_t CmdLen, uint8_t *rx_buff, size_t rx_len)
{
configASSERT(spi_num < SPI_DEVICE_MAX && spi_num != 2);
volatile spi_t *spi_handle = spi[spi_num];
uint8_t dfs_offset;
switch(spi_num)
{
case 0:
case 1:
dfs_offset = 16;
break;
case 2:
configASSERT(!"Spi Bus 2 Not Support!");
break;
case 3:
default:
dfs_offset = 0;
break;
}
uint32_t data_bit_length = (spi_handle->ctrlr0 >> dfs_offset) & 0x1F;
spi_transfer_width_t frame_width = spi_get_frame_size(data_bit_length);
size_t i;
uint32_t *write_cmd = NULL;
uint32_t *ReadBuf;
size_t v_recv_len;
switch(frame_width)
{
case SPI_TRANS_INT:
v_recv_len = rx_len / 4;
break;
case SPI_TRANS_SHORT:
write_cmd = malloc(CmdLen + rx_len /2 * sizeof(uint32_t));
for(i = 0; i < CmdLen; i++)
write_cmd[i] = CmdBuff[i];
ReadBuf = &write_cmd[i];
v_recv_len = rx_len / 2;
break;
default:
write_cmd = malloc(CmdLen + rx_len * sizeof(uint32_t));
for(i = 0; i < CmdLen; i++)
write_cmd[i] = CmdBuff[i];
ReadBuf = &write_cmd[i];
v_recv_len = rx_len;
break;
}
if(frame_width == SPI_TRANS_INT)
spi_receive_data_normal_dma(dma_send_channel_num, dma_receive_channel_num, spi_num, chip_select, CmdBuff, CmdLen, rx_buff, v_recv_len);
else
spi_receive_data_normal_dma(dma_send_channel_num, dma_receive_channel_num, spi_num, chip_select, write_cmd, CmdLen, ReadBuf, v_recv_len);
switch(frame_width)
{
case SPI_TRANS_INT:
break;
case SPI_TRANS_SHORT:
for(i = 0; i < v_recv_len; i++)
((uint16_t *)rx_buff)[i] = ReadBuf[i];
break;
default:
for(i = 0; i < v_recv_len; i++)
rx_buff[i] = ReadBuf[i];
break;
}
if(frame_width != SPI_TRANS_INT)
free(write_cmd);
}
void spi_send_data_multiple(spi_device_num_t spi_num, spi_chip_select_t chip_select, const uint32_t *CmdBuff,
size_t CmdLen, const uint8_t *tx_buff, size_t tx_len)
{
configASSERT(spi_num < SPI_DEVICE_MAX && spi_num != 2);
size_t index, fifo_len;
spi_set_tmod(spi_num, SPI_TMOD_TRANS);
volatile spi_t *spi_handle = spi[spi_num];
spi_handle->ssienr = 0x01;
spi_handle->ser = 1U << chip_select;
size_t v_cmd_len = CmdLen * 4;
while(v_cmd_len)
{
fifo_len = 32 - spi_handle->txflr;
fifo_len = fifo_len < v_cmd_len ? fifo_len : v_cmd_len;
fifo_len = fifo_len / 4 * 4;
for (index = 0; index < fifo_len / 4; index++)
spi_handle->dr[0] = *CmdBuff++;
v_cmd_len -= fifo_len;
}
spi_send_data_normal(spi_num, chip_select, tx_buff, tx_len);
}
void spi_send_data_multiple_dma(dmac_channel_number_t channel_num, spi_device_num_t spi_num,
spi_chip_select_t chip_select,
const uint32_t *CmdBuff, size_t CmdLen, const uint8_t *tx_buff, size_t tx_len)
{
configASSERT(spi_num < SPI_DEVICE_MAX && spi_num != 2);
volatile spi_t *spi_handle = spi[spi_num];
uint8_t dfs_offset;
switch(spi_num)
{
case 0:
case 1:
dfs_offset = 16;
break;
case 2:
configASSERT(!"Spi Bus 2 Not Support!");
break;
case 3:
default:
dfs_offset = 0;
break;
}
uint32_t data_bit_length = (spi_handle->ctrlr0 >> dfs_offset) & 0x1F;
spi_transfer_width_t frame_width = spi_get_frame_size(data_bit_length);
uint32_t *buf;
size_t v_send_len;
int i;
switch(frame_width)
{
case SPI_TRANS_INT:
buf = malloc(CmdLen * sizeof(uint32_t) + tx_len);
for(i = 0; i < CmdLen; i++)
buf[i] = CmdBuff[i];
for(i = 0; i < tx_len / 4; i++)
buf[CmdLen + i] = ((uint32_t *)tx_buff)[i];
v_send_len = CmdLen + tx_len / 4;
break;
case SPI_TRANS_SHORT:
buf = malloc(CmdLen * sizeof(uint32_t) + tx_len / 2 * sizeof(uint32_t));
for(i = 0; i < CmdLen; i++)
buf[i] = CmdBuff[i];
for(i = 0; i < tx_len / 2; i++)
buf[CmdLen + i] = ((uint16_t *)tx_buff)[i];
v_send_len = CmdLen + tx_len / 2;
break;
default:
buf = malloc((CmdLen + tx_len) * sizeof(uint32_t));
for(i = 0; i < CmdLen; i++)
buf[i] = CmdBuff[i];
for(i = 0; i < tx_len; i++)
buf[CmdLen + i] = tx_buff[i];
v_send_len = CmdLen + tx_len;
break;
}
spi_send_data_normal_dma(channel_num, spi_num, chip_select, buf, v_send_len, SPI_TRANS_INT);
free((void *)buf);
}
void spi_fill_data_dma(dmac_channel_number_t channel_num, spi_device_num_t spi_num, spi_chip_select_t chip_select,
const uint32_t *tx_buff, size_t tx_len)
{
configASSERT(spi_num < SPI_DEVICE_MAX && spi_num != 2);
spi_set_tmod(spi_num, SPI_TMOD_TRANS);
volatile spi_t *spi_handle = spi[spi_num];
spi_handle->dmacr = 0x2; /*enable dma transmit*/
spi_handle->ssienr = 0x01;
sysctl_dma_select((sysctl_dma_channel_t)channel_num, SYSCTL_DMA_SELECT_SSI0_TX_REQ + spi_num * 2);
dmac_set_single_mode(channel_num, tx_buff, (void *)(&spi_handle->dr[0]), DMAC_ADDR_NOCHANGE, DMAC_ADDR_NOCHANGE,
DMAC_MSIZE_1, DMAC_TRANS_WIDTH_32, tx_len);
spi_handle->ser = 1U << chip_select;
dmac_wait_done(channel_num);
while ((spi_handle->sr & 0x05) != 0x04)
;
spi_handle->ser = 0x00;
spi_handle->ssienr = 0x00;
}
static int spi_slave_irq(void *ctx)
{
volatile spi_t *spi_handle = spi[2];
spi_handle->imr = 0x00;
*(volatile uint32_t *)((uintptr_t)spi_handle->icr);
if (g_instance.status == IDLE)
g_instance.status = COMMAND;
return 0;
}
static void spi_slave_idle_mode(void)
{
volatile spi_t *spi_handle = spi[2];
uint32_t DataWidth = g_instance.data_bit_length / 8;
g_instance.status = IDLE;
spi_handle->ssienr = 0x00;
spi_handle->ctrlr0 = (0x0 << g_instance.work_mode) | (0x1 << g_instance.slv_oe) | ((g_instance.data_bit_length - 1) << g_instance.dfs);
spi_handle->rxftlr = 0x08 / DataWidth - 1;
spi_handle->dmacr = 0x00;
spi_handle->imr = 0x10;
spi_handle->ssienr = 0x01;
gpiohs_set_pin(g_instance.ready_pin, GPIO_PV_HIGH);
}
static void spi_slave_command_mode(void)
{
volatile spi_t *spi_handle = spi[2];
uint8_t CmdData[8], sum = 0;
spi_transfer_width_t frame_width = spi_get_frame_size(g_instance.data_bit_length - 1);
uint32_t DataWidth = g_instance.data_bit_length / 8;
spi_device_num_t spi_num = SPI_DEVICE_2;
switch(frame_width)
{
case SPI_TRANS_INT:
for (uint32_t i = 0; i < 8 / 4; i++)
((uint32_t *)CmdData)[i] = spi_handle->dr[0];
break;
case SPI_TRANS_SHORT:
for (uint32_t i = 0; i < 8 / 2; i++)
((uint16_t *)CmdData)[i] = spi_handle->dr[0];
break;
default:
for (uint32_t i = 0; i < 8; i++)
CmdData[i] = spi_handle->dr[0];
break;
}
for (uint32_t i = 0; i < 7; i++)
{
sum += CmdData[i];
}
if (CmdData[7] != sum)
{
spi_slave_idle_mode();
return;
}
g_instance.command.cmd = CmdData[0];
g_instance.command.addr = CmdData[1] | (CmdData[2] << 8) | (CmdData[3] << 16) | (CmdData[4] << 24);
g_instance.command.len = CmdData[5] | (CmdData[6] << 8);
if (g_instance.command.len == 0)
g_instance.command.len = 65536;
if ((g_instance.command.cmd < WRITE_DATA_BLOCK) && (g_instance.command.len > 8))
{
spi_slave_idle_mode();
return;
}
g_instance.status = TRANSFER;
spi_handle->ssienr = 0x00;
if (g_instance.command.cmd == WRITE_CONFIG)
{
spi_handle->ctrlr0 = (0x0 << g_instance.work_mode) | (0x1 << g_instance.slv_oe) | ((g_instance.data_bit_length - 1) << g_instance.dfs);
spi[2]->rxftlr = g_instance.command.len / DataWidth - 1;
spi_handle->imr = 0x00;
spi_handle->ssienr = 0x01;
}
else if (g_instance.command.cmd == READ_CONFIG)
{
spi_handle->ctrlr0 = (0x0 << g_instance.work_mode) | (0x0 << g_instance.slv_oe) | ((g_instance.data_bit_length - 1) << g_instance.dfs);
spi_set_tmod(2, SPI_TMOD_TRANS);
spi_handle->txftlr = 0x00;
spi_handle->imr = 0x00;
spi_handle->ssienr = 0x01;
switch(frame_width)
{
case SPI_TRANS_INT:
for (uint32_t i = 0; i < g_instance.command.len / 4; i++)
{
spi_handle->dr[0] = ((uint32_t *)&g_instance.config_ptr[g_instance.command.addr])[i];
}
break;
case SPI_TRANS_SHORT:
for (uint32_t i = 0; i < g_instance.command.len / 2; i++)
{
spi_handle->dr[0] = ((uint16_t *)&g_instance.config_ptr[g_instance.command.addr])[i];
}
break;
default:
for (uint32_t i = 0; i < g_instance.command.len; i++)
{
spi_handle->dr[0] = ((uint8_t *)&g_instance.config_ptr[g_instance.command.addr])[i];
}
break;
}
}
else if (g_instance.command.cmd == WRITE_DATA_BYTE)
{
spi_handle->ctrlr0 = (0x0 << g_instance.work_mode) | (0x1 << g_instance.slv_oe) | ((g_instance.data_bit_length - 1) << g_instance.dfs);
spi[2]->rxftlr = g_instance.command.len / DataWidth - 1;
spi_handle->imr = 0x00;
spi_handle->ssienr = 0x01;
}
else if (g_instance.command.cmd == READ_DATA_BYTE)
{
spi_handle->ctrlr0 = (0x0 << g_instance.work_mode) | (0x0 << g_instance.slv_oe) | ((g_instance.data_bit_length - 1) << g_instance.dfs);
spi_set_tmod(2, SPI_TMOD_TRANS);
spi_handle->txftlr = 0x00;
spi_handle->imr = 0x00;
spi_handle->ssienr = 0x01;
switch(frame_width)
{
case SPI_TRANS_INT:
for (uint32_t i = 0; i < g_instance.command.len / 4; i++)
{
spi_handle->dr[0] = ((uint32_t *)(uintptr_t)g_instance.command.addr)[i];
}
break;
case SPI_TRANS_SHORT:
for (uint32_t i = 0; i < g_instance.command.len / 2; i++)
{
spi_handle->dr[0] = ((uint16_t *)(uintptr_t)g_instance.command.addr)[i];
}
break;
default:
for (uint32_t i = 0; i < g_instance.command.len; i++)
{
spi_handle->dr[0] = ((uint8_t *)(uintptr_t)g_instance.command.addr)[i];
}
break;
}
}
else if (g_instance.command.cmd == WRITE_DATA_BLOCK)
{
spi_handle->ctrlr0 = (0x0 << g_instance.work_mode) | (0x1 << g_instance.slv_oe) | ((32 - 1) << g_instance.dfs);
spi_handle->dmacr = 0x01;
spi_handle->imr = 0x00;
spi_handle->ssienr = 0x01;
sysctl_dma_select(g_instance.dmac_channel, SYSCTL_DMA_SELECT_SSI0_RX_REQ + spi_num * 2);
dmac_set_single_mode(g_instance.dmac_channel, (void *)(&spi_handle->dr[0]), (void *)((uintptr_t)g_instance.command.addr & 0xFFFFFFF0), DMAC_ADDR_NOCHANGE, DMAC_ADDR_INCREMENT,
DMAC_MSIZE_4, DMAC_TRANS_WIDTH_32, g_instance.command.len * 4);
}
else if (g_instance.command.cmd == READ_DATA_BLOCK)
{
spi_handle->ctrlr0 = (0x0 << g_instance.work_mode) | (0x0 << g_instance.slv_oe) | ((32 - 1) << g_instance.dfs);
spi_set_tmod(2, SPI_TMOD_TRANS);
spi_handle->dmacr = 0x02;
spi_handle->imr = 0x00;
spi_handle->ssienr = 0x01;
sysctl_dma_select(g_instance.dmac_channel, SYSCTL_DMA_SELECT_SSI0_TX_REQ + spi_num * 2);
dmac_set_single_mode(g_instance.dmac_channel, (void *)((uintptr_t)g_instance.command.addr & 0xFFFFFFF0), (void *)(&spi_handle->dr[0]), DMAC_ADDR_INCREMENT, DMAC_ADDR_NOCHANGE,
DMAC_MSIZE_4, DMAC_TRANS_WIDTH_32, g_instance.command.len * 4);
}
else
{
spi_slave_idle_mode();
return;
}
gpiohs_set_pin(g_instance.ready_pin, GPIO_PV_LOW);
}
static void spi_slave_transfer_mode(void)
{
spi_transfer_width_t frame_width = spi_get_frame_size(g_instance.data_bit_length - 1);
uint32_t command_len = 0;
switch(frame_width)
{
case SPI_TRANS_INT:
command_len = g_instance.command.len / 4;
break;
case SPI_TRANS_SHORT:
command_len = g_instance.command.len / 2;
break;
default:
command_len = g_instance.command.len;
break;
}
volatile spi_t *spi_handle = spi[2];
g_instance.command.err = 0;
if (g_instance.command.cmd == WRITE_CONFIG || g_instance.command.cmd == WRITE_DATA_BYTE)
{
if (spi_handle->rxflr < command_len - 1)
g_instance.command.err = 1;
}
else if (g_instance.command.cmd == READ_CONFIG || g_instance.command.cmd == READ_DATA_BYTE)
{
if (spi_handle->txflr != 0)
g_instance.command.err = 2;
} else if (g_instance.command.cmd == WRITE_DATA_BLOCK || g_instance.command.cmd == READ_DATA_BLOCK)
{
if (dmac->channel[g_instance.dmac_channel].intstatus != 0x02)
g_instance.command.err = 3;
}
else
{
spi_slave_idle_mode();
return;
}
if (g_instance.command.err == 0)
{
if (g_instance.command.cmd == WRITE_CONFIG)
{
switch(frame_width)
{
case SPI_TRANS_INT:
for (uint32_t i = 0; i < command_len; i++)
{
((uint32_t *)&g_instance.config_ptr[g_instance.command.addr])[i] = spi_handle->dr[0];
}
break;
case SPI_TRANS_SHORT:
for (uint32_t i = 0; i < command_len; i++)
{
((uint16_t *)&g_instance.config_ptr[g_instance.command.addr])[i] = spi_handle->dr[0];
}
break;
default:
for (uint32_t i = 0; i < command_len; i++)
{
((uint8_t *)&g_instance.config_ptr[g_instance.command.addr])[i] = spi_handle->dr[0];
}
break;
}
}
else if (g_instance.command.cmd == WRITE_DATA_BYTE)
{
switch(frame_width)
{
case SPI_TRANS_INT:
for (uint32_t i = 0; i < command_len; i++)
{
((uint32_t *)(uintptr_t)g_instance.command.addr)[i] = spi_handle->dr[0];
}
break;
case SPI_TRANS_SHORT:
for (uint32_t i = 0; i < command_len; i++)
{
((uint16_t *)(uintptr_t)g_instance.command.addr)[i] = spi_handle->dr[0];
}
break;
default:
for (uint32_t i = 0; i < command_len; i++)
{
((uint8_t *)(uintptr_t)g_instance.command.addr)[i] = spi_handle->dr[0];
}
break;
}
}
}
if(g_instance.callback != NULL)
{
g_instance.callback((void *)&g_instance.command);
}
spi_slave_idle_mode();
}
static void spi_slave_cs_irq(void)
{
if (g_instance.status == IDLE)
spi_slave_idle_mode();
else if (g_instance.status == COMMAND)
spi_slave_command_mode();
else if (g_instance.status == TRANSFER)
spi_slave_transfer_mode();
}
void spi_slave_config(uint8_t int_pin, uint8_t ready_pin, dmac_channel_number_t dmac_channel, size_t data_bit_length, uint8_t *data, uint32_t len, spi_slave_receive_callback_t callback)
{
g_instance.status = IDLE;
g_instance.config_ptr = data;
g_instance.config_len = len;
g_instance.work_mode = 6;
g_instance.slv_oe = 10;
g_instance.dfs = 16;
g_instance.data_bit_length = data_bit_length;
g_instance.ready_pin = ready_pin;
g_instance.int_pin = int_pin;
g_instance.callback = callback;
g_instance.dmac_channel = dmac_channel;
sysctl_reset(SYSCTL_RESET_SPI2);
sysctl_clock_enable(SYSCTL_CLOCK_SPI2);
sysctl_clock_set_threshold(SYSCTL_THRESHOLD_SPI2, 9);
uint32_t DataWidth = data_bit_length / 8;
volatile spi_t *spi_handle = spi[2];
spi_handle->ssienr = 0x00;
spi_handle->ctrlr0 = (0x0 << g_instance.work_mode) | (0x1 << g_instance.slv_oe) | ((data_bit_length - 1) << g_instance.dfs);
spi_handle->dmatdlr = 0x04;
spi_handle->dmardlr = 0x03;
spi_handle->dmacr = 0x00;
spi_handle->txftlr = 0x00;
spi_handle->rxftlr = 0x08 / DataWidth - 1;
spi_handle->imr = 0x10;
spi_handle->ssienr = 0x01;
gpiohs_set_drive_mode(g_instance.ready_pin, GPIO_DM_OUTPUT);
gpiohs_set_pin(g_instance.ready_pin, GPIO_PV_HIGH);
gpiohs_set_drive_mode(g_instance.int_pin, GPIO_DM_INPUT_PULL_UP);
gpiohs_set_pin_edge(g_instance.int_pin, GPIO_PE_RISING);
gpiohs_set_irq(g_instance.int_pin, 3, spi_slave_cs_irq);
plic_set_priority(IRQN_SPI_SLAVE_INTERRUPT, 4);
plic_irq_enable(IRQN_SPI_SLAVE_INTERRUPT);
plic_irq_register(IRQN_SPI_SLAVE_INTERRUPT, spi_slave_irq, NULL);
}
void spi_handle_data_dma(spi_device_num_t spi_num, spi_chip_select_t chip_select, spi_data_t data, plic_interrupt_t *cb)
{
configASSERT(spi_num < SPI_DEVICE_MAX && spi_num != 2);
configASSERT(chip_select < SPI_CHIP_SELECT_MAX);
switch(data.TransferMode)
{
case SPI_TMOD_TRANS_RECV:
case SPI_TMOD_EEROM:
configASSERT(data.tx_buf && data.tx_len && data.rx_buf && data.rx_len);
break;
case SPI_TMOD_TRANS:
configASSERT(data.tx_buf && data.tx_len);
break;
case SPI_TMOD_RECV:
configASSERT(data.rx_buf && data.rx_len);
break;
default:
configASSERT(!"Transfer Mode ERR");
break;
}
configASSERT(data.tx_channel < DMAC_CHANNEL_MAX && data.rx_channel < DMAC_CHANNEL_MAX);
volatile spi_t *spi_handle = spi[spi_num];
spinlock_lock(&g_spi_instance[spi_num].lock);
if(cb)
{
g_spi_instance[spi_num].spi_int_instance.callback = cb->callback;
g_spi_instance[spi_num].spi_int_instance.ctx = cb->ctx;
}
switch(data.TransferMode)
{
case SPI_TMOD_RECV:
spi_set_tmod(spi_num, SPI_TMOD_RECV);
if(data.rx_len > 65536)
data.rx_len = 65536;
spi_handle->ctrlr1 = (uint32_t)(data.rx_len - 1);
spi_handle->dmacr = 0x03;
spi_handle->ssienr = 0x01;
if(spi_get_frame_format(spi_num) == SPI_FF_STANDARD)
spi_handle->dr[0] = 0xffffffff;
if(cb)
{
dmac_irq_register(data.rx_channel, spi_dma_irq, &g_spi_instance[spi_num], cb->priority);
g_spi_instance[spi_num].dmac_channel = data.rx_channel;
}
sysctl_dma_select((sysctl_dma_channel_t)data.rx_channel, SYSCTL_DMA_SELECT_SSI0_RX_REQ + spi_num * 2);
dmac_set_single_mode(data.rx_channel, (void *)(&spi_handle->dr[0]), (void *)data.rx_buf, DMAC_ADDR_NOCHANGE, DMAC_ADDR_INCREMENT,
DMAC_MSIZE_1, DMAC_TRANS_WIDTH_32, data.rx_len);
spi_handle->ser = 1U << chip_select;
if(!cb)
dmac_wait_idle(data.rx_channel);
break;
case SPI_TMOD_TRANS:
spi_set_tmod(spi_num, SPI_TMOD_TRANS);
spi_handle->dmacr = 0x2; /*enable dma transmit*/
spi_handle->ssienr = 0x01;
if(cb)
{
dmac_irq_register(data.tx_channel, spi_dma_irq, &g_spi_instance[spi_num], cb->priority);
g_spi_instance[spi_num].dmac_channel = data.tx_channel;
}
sysctl_dma_select(data.tx_channel, SYSCTL_DMA_SELECT_SSI0_TX_REQ + spi_num * 2);
if(data.fill_mode)
dmac_set_single_mode(data.tx_channel, data.tx_buf, (void *)(&spi_handle->dr[0]), DMAC_ADDR_NOCHANGE, DMAC_ADDR_NOCHANGE,
DMAC_MSIZE_4, DMAC_TRANS_WIDTH_32, data.tx_len);
else
dmac_set_single_mode(data.tx_channel, data.tx_buf, (void *)(&spi_handle->dr[0]), DMAC_ADDR_INCREMENT, DMAC_ADDR_NOCHANGE,
DMAC_MSIZE_4, DMAC_TRANS_WIDTH_32, data.tx_len);
spi_handle->ser = 1U << chip_select;
if(!cb)
{
dmac_wait_idle(data.tx_channel);
while ((spi_handle->sr & 0x05) != 0x04)
;
}
break;
case SPI_TMOD_EEROM:
spi_set_tmod(spi_num, SPI_TMOD_EEROM);
if(data.rx_len > 65536)
data.rx_len = 65536;
spi_handle->ctrlr1 = (uint32_t)(data.rx_len - 1);
spi_handle->dmacr = 0x3;
spi_handle->ssienr = 0x01;
sysctl_dma_select(data.tx_channel, SYSCTL_DMA_SELECT_SSI0_TX_REQ + spi_num * 2);
if(data.fill_mode)
dmac_set_single_mode(data.tx_channel, data.tx_buf, (void *)(&spi_handle->dr[0]), DMAC_ADDR_NOCHANGE, DMAC_ADDR_NOCHANGE,
DMAC_MSIZE_4, DMAC_TRANS_WIDTH_32, data.tx_len);
else
dmac_set_single_mode(data.tx_channel, data.tx_buf, (void *)(&spi_handle->dr[0]), DMAC_ADDR_INCREMENT, DMAC_ADDR_NOCHANGE,
DMAC_MSIZE_4, DMAC_TRANS_WIDTH_32, data.tx_len);
if(cb)
{
dmac_irq_register(data.rx_channel, spi_dma_irq, &g_spi_instance[spi_num], cb->priority);
g_spi_instance[spi_num].dmac_channel = data.rx_channel;
}
sysctl_dma_select(data.rx_channel, SYSCTL_DMA_SELECT_SSI0_RX_REQ + spi_num * 2);
dmac_set_single_mode(data.rx_channel, (void *)(&spi_handle->dr[0]), (void *)data.rx_buf, DMAC_ADDR_NOCHANGE, DMAC_ADDR_INCREMENT,
DMAC_MSIZE_1, DMAC_TRANS_WIDTH_32, data.rx_len);
spi_handle->ser = 1U << chip_select;
if(!cb)
dmac_wait_idle(data.rx_channel);
break;
case SPI_TMOD_TRANS_RECV:
spi_set_tmod(spi_num, SPI_TMOD_TRANS_RECV);
if(data.rx_len > 65536)
data.rx_len = 65536;
if(cb)
{
if(data.tx_len > data.rx_len)
{
dmac_irq_register(data.tx_channel, spi_dma_irq, &g_spi_instance[spi_num], cb->priority);
g_spi_instance[spi_num].dmac_channel = data.tx_channel;
}
else
{
dmac_irq_register(data.rx_channel, spi_dma_irq, &g_spi_instance[spi_num], cb->priority);
g_spi_instance[spi_num].dmac_channel = data.rx_channel;
}
}
spi_handle->ctrlr1 = (uint32_t)(data.rx_len - 1);
spi_handle->dmacr = 0x3;
spi_handle->ssienr = 0x01;
sysctl_dma_select(data.tx_channel, SYSCTL_DMA_SELECT_SSI0_TX_REQ + spi_num * 2);
if(data.fill_mode)
dmac_set_single_mode(data.tx_channel, data.tx_buf, (void *)(&spi_handle->dr[0]), DMAC_ADDR_NOCHANGE, DMAC_ADDR_NOCHANGE,
DMAC_MSIZE_4, DMAC_TRANS_WIDTH_32, data.tx_len);
else
dmac_set_single_mode(data.tx_channel, data.tx_buf, (void *)(&spi_handle->dr[0]), DMAC_ADDR_INCREMENT, DMAC_ADDR_NOCHANGE,
DMAC_MSIZE_4, DMAC_TRANS_WIDTH_32, data.tx_len);
sysctl_dma_select(data.rx_channel, SYSCTL_DMA_SELECT_SSI0_RX_REQ + spi_num * 2);
dmac_set_single_mode(data.rx_channel, (void *)(&spi_handle->dr[0]), (void *)data.rx_buf, DMAC_ADDR_NOCHANGE, DMAC_ADDR_INCREMENT,
DMAC_MSIZE_1, DMAC_TRANS_WIDTH_32, data.rx_len);
spi_handle->ser = 1U << chip_select;
if(!cb)
{
dmac_wait_idle(data.tx_channel);
dmac_wait_idle(data.rx_channel);
}
break;
}
if(!cb)
{
spinlock_unlock(&g_spi_instance[spi_num].lock);
spi_handle->ser = 0x00;
spi_handle->ssienr = 0x00;
}
}