forked from opensci/piflow
delete ml group
This commit is contained in:
parent
655a6d6eb7
commit
a2b4633f45
|
@ -1,62 +0,0 @@
|
|||
package cn.piflow.bundle.ml
|
||||
|
||||
import cn.piflow.{JobContext, JobInputStream, JobOutputStream, ProcessContext}
|
||||
import cn.piflow.bundle.util.{JedisClusterImplSer, RedisUtil}
|
||||
import cn.piflow.conf.{ConfigurableStop, StopGroupEnum}
|
||||
import cn.piflow.conf.bean.PropertyDescriptor
|
||||
import cn.piflow.conf.util.MapUtil
|
||||
//import org.apache.spark.ml.classification.{NaiveBayes, NaiveBayesModel}
|
||||
import org.apache.spark.sql.SparkSession
|
||||
import redis.clients.jedis.HostAndPort
|
||||
|
||||
class NaiveBayesPrediction extends ConfigurableStop{
|
||||
val description: String = "Mllib naive bayes prediction."
|
||||
val inportCount: Int = 1
|
||||
val outportCount: Int = 0
|
||||
var test_data_path:String =_
|
||||
var model_path:String=_
|
||||
|
||||
|
||||
def perform(in: JobInputStream, out: JobOutputStream, pec: JobContext): Unit = {
|
||||
val spark = pec.get[SparkSession]()
|
||||
//load data stored in libsvm format as a dataframe
|
||||
val data=spark.read.format("libsvm").load(test_data_path)
|
||||
//data.show()
|
||||
|
||||
//load model
|
||||
//val model=NaiveBayesModel.load(model_path)
|
||||
|
||||
//val predictions=model.transform(data)
|
||||
//predictions.show()
|
||||
//out.write(predictions)
|
||||
|
||||
}
|
||||
|
||||
def initialize(ctx: ProcessContext): Unit = {
|
||||
|
||||
}
|
||||
|
||||
|
||||
def setProperties(map: Map[String, Any]): Unit = {
|
||||
test_data_path=MapUtil.get(map,key="test_data_path").asInstanceOf[String]
|
||||
model_path=MapUtil.get(map,key="model_path").asInstanceOf[String]
|
||||
}
|
||||
|
||||
override def getPropertyDescriptor(): List[PropertyDescriptor] = {
|
||||
var descriptor : List[PropertyDescriptor] = List()
|
||||
val test_data_path = new PropertyDescriptor().name("test_data_path").displayName("TEST_DATA_PATH").defaultValue("").required(true)
|
||||
val model_path = new PropertyDescriptor().name("model_path").displayName("MODEL_PATH").defaultValue("").required(true)
|
||||
descriptor = test_data_path :: descriptor
|
||||
descriptor = model_path :: descriptor
|
||||
descriptor
|
||||
}
|
||||
|
||||
override def getIcon(): Array[Byte] = ???
|
||||
|
||||
override def getGroup(): List[String] = {
|
||||
List(/*StopGroupEnum.MLGroup.toString*/"")
|
||||
}
|
||||
|
||||
override val authorEmail: String = "xiaoxiao@cnic.cn"
|
||||
|
||||
}
|
|
@ -1,76 +0,0 @@
|
|||
package cn.piflow.bundle.ml
|
||||
|
||||
import cn.piflow.{JobContext, JobInputStream, JobOutputStream, ProcessContext}
|
||||
import cn.piflow.bundle.util.{JedisClusterImplSer, RedisUtil}
|
||||
import cn.piflow.conf.{ConfigurableStop, StopGroupEnum}
|
||||
import cn.piflow.conf.bean.PropertyDescriptor
|
||||
import cn.piflow.conf.util.MapUtil
|
||||
//import org.apache.spark.ml.classification._
|
||||
|
||||
import org.apache.spark.sql.SparkSession
|
||||
|
||||
class NaiveBayesTraining extends ConfigurableStop{
|
||||
val description: String = "Mllib naive bayes training."
|
||||
val inportCount: Int = 1
|
||||
val outportCount: Int = 0
|
||||
var training_data_path:String =_
|
||||
var smoothing_value:String=_
|
||||
var model_save_path:String=_
|
||||
|
||||
|
||||
def perform(in: JobInputStream, out: JobOutputStream, pec: JobContext): Unit = {
|
||||
/*val spark = pec.get[SparkSession]()
|
||||
|
||||
//load data stored in libsvm format as a dataframe
|
||||
val data=spark.read.format("libsvm").load(training_data_path)
|
||||
|
||||
//get smoothing factor
|
||||
var smoothing_factor:Double=0
|
||||
if(smoothing_value!=""){
|
||||
smoothing_factor=smoothing_value.toDouble
|
||||
}
|
||||
|
||||
//training a NaiveBayes model
|
||||
val model=new NaiveBayes().setSmoothing(smoothing_factor).fit(data)
|
||||
|
||||
//model persistence
|
||||
model.save(model_save_path)
|
||||
|
||||
import spark.implicits._
|
||||
val dfOut=Seq(model_save_path).toDF
|
||||
dfOut.show()
|
||||
out.write(dfOut)*/
|
||||
|
||||
}
|
||||
|
||||
def initialize(ctx: ProcessContext): Unit = {
|
||||
|
||||
}
|
||||
|
||||
|
||||
def setProperties(map: Map[String, Any]): Unit = {
|
||||
training_data_path=MapUtil.get(map,key="training_data_path").asInstanceOf[String]
|
||||
smoothing_value=MapUtil.get(map,key="smoothing_value").asInstanceOf[String]
|
||||
model_save_path=MapUtil.get(map,key="model_save_path").asInstanceOf[String]
|
||||
}
|
||||
|
||||
override def getPropertyDescriptor(): List[PropertyDescriptor] = {
|
||||
var descriptor : List[PropertyDescriptor] = List()
|
||||
val training_data_path = new PropertyDescriptor().name("training_data_path").displayName("TRAINING_DATA_PATH").defaultValue("").required(true)
|
||||
val smoothing_value = new PropertyDescriptor().name("smoothing_value").displayName("SMOOTHING_FACTOR").defaultValue("0").required(false)
|
||||
val model_save_path = new PropertyDescriptor().name("model_save_path").displayName("MODEL_SAVE_PATH").defaultValue("").required(true)
|
||||
descriptor = training_data_path :: descriptor
|
||||
descriptor = smoothing_value :: descriptor
|
||||
descriptor = model_save_path :: descriptor
|
||||
descriptor
|
||||
}
|
||||
|
||||
override def getIcon(): Array[Byte] = ???
|
||||
|
||||
override def getGroup(): List[String] = {
|
||||
List(/*StopGroupEnum.MLGroup.toString*/"")
|
||||
}
|
||||
|
||||
override val authorEmail: String = "xiaoxiao@cnic.cn"
|
||||
|
||||
}
|
Loading…
Reference in New Issue